For many years traditional 193i lithography has been extended to the next technology node by means of multi-patterning techniques. However recently such a 193i technology became challenging and expensive to push beyond the technology node for complex features that can be tackled in a simpler manner by the Extreme UltraViolet Lithography (EUVL) technology. Nowadays, EUVL is part of the high-volume manufacturing device landscape and it has reached a critical decision point where one can push further the single print on 0.33NA full field scanner or move to a EUV double patterning technology with more relaxed pitches to overcome current 0.33NA stochastic limits. In this work we have selected the 28nm pitch dense line-space (P28) as critical decision check point. We have looked at the 0.33NA EUV single print because it is more cost effective than 0.33NA EUV double patterning. In addition, we have conducted a process feasibility study as P28 in single print is close to the resolution limit of the 0.33NA EUV full field scanner. We present the process results on 28nm dense line-space patterning by using Inpria’s metal-oxide (MOx) EUV resist. We discuss the lithographic and etching process challenges by looking at resist sensitivity, unbiased line edge roughness (LER) and nano patterning failures after etching (AE), using broad band plasma (BBP) and e-beam (EB) defectivity inspection tools. To get further understanding on the P28 single patterning capability we have integrated the developed EUV MOx process in a relevant iN7 technology test vehicle by developing a full P28 metallization module with ruthenium. In such a way we were able to carry on electrical tests on metallized serpentine, fork-fork and tip-to-tip structures designed with a purpose of enabling further learning on pattern failures through electrical measurements. Finally, we conclude by showing the readiness of P28 single exposure using Inpria’s MOx process on a 0.33NA EUV full field scanner.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.