GEO-X (GEOspace X-ray imager) is a small satellite mission to visualize the Earth’s magnetosphere through Solar Wind Charge eXchange (SWCX). SWCX is known as soft X-ray emissions generated by the charge exchange between highly charged-state heavy ions and neutral atoms in the Earth’s exosphere. The GEO-X satellite is aimed to be launched during the upcoming solar maximum around 2025-2027 and is planned to be injected to a low-latitude orbit which allows visualization of the magnetosphere from outside the magnetosphere. The satellite will carry a light-weight X-ray imaging spectrometer, dramatically improving the size and weight of those onboard past X-ray astronomy satellites.
GEOspace X-ray imager (GEO-X) is a small satellite mission aiming at visualization of the Earth’s magnetosphere by X-rays and revealing dynamic couplings between solar wind and the magnetosphere. In-situ spacecraft have revealed various phenomena in the magnetosphere. X-ray astronomy satellite observations recently discovered soft X-ray emissions originating from the magnetosphere. We are developing GEO-X by integrating innovative technologies of a wide field of view (FOV) X-ray instrument and a small satellite for deep space exploration. The satellite combines a Cubesat and a hybrid kick motor, which can produce a large delta v to increase the altitude of the orbit to about 30 to 60 RE from a relatively low-altitude (e.g., geo transfer orbit) piggyback launch. GEO-X carries a wide FOV (5 × 5 deg) and a good spatial resolution (10 arcmin) X-ray (0.3 to 2 keV) imaging spectrometer using a micro-machined X-ray telescope and a CMOS detector system combined with an optical blocking filter. We aim to launch the satellite around the solar maximum of solar cycle 25.
GEO-X (GEOspace X-ray imager) is a small satellite mission aiming at visualization of the Earth’s magnetosphere by X-rays and revealing dynamical couplings between solar wind and magnetosphere. In-situ spacecraft have revealed various phenomena in the magnetosphere. In recent years, X-ray astronomy satellite observations discovered soft X-ray emission originated from the magnetosphere. We therefore develop GEO-X by integrating innovative technologies of the wide FOV X-ray instrument and the microsatellite technology for deep space exploration. GEO-X is a 50 kg class microsatellite carrying a novel compact X-ray imaging spectrometer payload. The microsatellite having a large delta v (<700 m/s) to increase an altitude at 40-60 RE from relatively lowaltitude (e.g., Geo Transfer Orbit) piggyback launch is necessary. We thus combine a 18U Cubesat with the hybrid kick motor composed of liquid N2O and polyethylene. We also develop a wide FOV (5×5 deg) and a good spatial resolution (10 arcmin) X-ray (0.3-2 keV) imager. We utilize a micromachined X-ray telescope, and a CMOS detector system with an optical blocking filter. We aim to launch the satellite around the 25th solar maximum.
GEO-X (GEOspace X-ray imager) is a 50 kg-class small satellite to image the global Earth’s magnetosphere in X-rays via solar wind charge exchange emission. A 12U CubeSat will be injected into an elliptical orbit with an apogee distance of ∼40 Earth radii. In order to observe the diffuse soft X-ray emission in 0.3-2 keV and to verify X-ray imaging of the dayside structures of the magnetosphere such as cusps, magnetosheaths and magnetopauses which are identified statistically by in-situ satellite observations, an original light-weight X-ray imaging spectrometer (∼10 kg, ∼10 W, ∼10×10×30 cm) will be carried. The payload is composed of a ultra light-weight MEMS Wolter type-I telescope (∼4×4 deg2 FOV, <10 arcmin resolution) and a high speed CMOS sensor with a thin optical blocking filter (∼2×2 cm2 , frame rate ∼20 ms, energy resolution <80 eV FWHM at 0.6 keV). An aimed launch year is 2023-25 corresponding to the 25th solar maximum.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.