Due to the harsh working environment and lacking of external information, after a long period of work, the performance of the local reference inertial device will deteriorate, which will cause the navigation information to fail to meet the requirements of user equipment. In this paper, a local reference dynamic calibration method based on hull deformation compensation is proposed. Firstly, eliminate the coordinate system misalignment between the main inertial navigation system (MINS) and the local reference. Furthermore, a Kalman filter is designed to calibrate the bias errors of the local reference laser gyro and accelerometer based on the high-precision navigation information of the MINS. The simulation results show that after accurate hull deformation compensation, the local reference laser gyro bias error estimation accuracy is better than 0.002°/h , accelerometer bias error estimation accuracy is better than 1μg ,which provides an effective solution for local reference marine dynamic calibration
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.