There are more than 40 years history of adaptive optics (AO) in Institute of Optics and Electronics (IOE), Chinese Academy of Sciences since 1980. The research concern all the aspects including the theories study, devices manufacture, and system development. The recent advances on astronomical AO are reported in this presentation. The recent AO systems developments for 4-meter night-time optical telescope, 1.8-meter solar telescope CLST and the 1-m New Vacuum Solar Telescope at Fuxian Lake Solar Observatory are presented respectively. The Deformable Secondary Mirror advancement is also introduced.
The wide field adaptive optics system for solar observations had been developed and put in routine operation at the 1-meter New Vacuum Solar Telescope (NVST) in Fuxian Lake, Yunnan Observatory. This system adopts the configuration based on the high order ground layer correction loop and the low order high altitude correction loop. Three correction modes, namely the conventional adaptive optics (CAO), ground layer adaptive optics (GLAO), and multi-conjugate adaptive optics (MCAO) with three layers correction, can be chosen with the science requirement. The DM for ground layer correction is inherited from the 151-element AO system, and two new DMs are added and conjugated to 2~5km and 7~10km, respectively. The opto-mechanical design allows for changing the conjugate height of the two DMs independently. Two multi-direction Shack-Hartmann wavefront sensors are employed for sensing the aberration from ground layer and high-altitudes turbulence. The control system is based on multi-core CPUs platform, which is flexible for testing various control approaches. We summarize the design and report the observational results of different correction modes.
Common Hartmann wavefront sensor bases on planar reference wave which prevent it measure the aberration of spherical wave directly. When adjusting an optical system with a Hartmann wavefront sensor, the optical path should be collimated firstly. It will make the measurement more complicated and may bring new aberration. To solve the problem, a Hartmann wavefront sensor which bases on spherical reference wave is proposed. In this paper, we analyze the principles of the Hartmann wavefront sensor and verify its feasibility by numerical simulation. The simulation result shows that, on the condition of RMS=1λ(λ=0.6328μm), the relative RMS of the residual error of the reconstructed wavefront is under 8% when the detected wavefront is the 2~15th order Zernike aberration.
KEYWORDS: Adaptive optics, Solar telescopes, Wavefront sensors, Digital signal processing, Telescopes, Observatories, Turbulence, Field programmable gate arrays, Wavefronts, Image resolution
Multi-conjugate adaptive optics (MCAO) has been proved to obtain the high resolution images with a large field of view in solar observation. A solar MCAO experiment system had been successfully developed and tested at the 1-meter New Vacuum Solar Telescope (NVST) of Fuxian Solar Observatory. It consists of two deformable mirrors (DMs), a multidirection Shack-Hartmann wavefront sensor (MD-WFS), and a real-time controller. In order to command the two DMs, five guide regions were selected from the MD-WFS to retrieve a three-dimensional measurement of the turbulent volume based on atmospheric tomography. This system saw the first light in October, 2017, and a series of MCAO-corrected high resolution sunspots images were acquired. In this presentation, the MCAO experiment system is introduced, and the observation results are presented. Furthermore, a new MCAO system based on our proposed MCAO configuration with a high order ground layer adaptive optics and low order high altitude correction will be developed for the NVST as a regularly operating instrument for scientific observations of the sun.
Correlating Shack-Hartmann wavefront sensor is widely used in solar adaptive optics in which the relative shift between
different subapertures by correlation algorithm is computed, and then the control voltage by wavefront
reconstruction can be estimated to use for correcting the wavefront distortion induced by atmospheric turbulence. In this
paper, several different correlation algorithms including Cross-Correlation Coefficient, Absolute Difference Function,
Absolute Difference Function-Squared and Square Difference Function are used to estimate relative shift in correlating
Shack-Hartmann wave-front sensor with the different observed solar structure such as sunspot, solar pore and solar
granulation. The measurement noise RMS error is computed to compare the performance of the correlation algorithms.
The results show the correlation algorithm precision is directly related to the solar structure. The measurement noise is
relatively small with the relatively high contrast target, and vice versa. At the same time, the size of reference image also
could influence the measurement noise, the larger size of the reference image, the smaller the measurement noise is.
KEYWORDS: Adaptive optics, Solar telescopes, Observatories, Free space optics, Actuators, Digital signal processing, Telescopes, Imaging systems, Cameras, Mirrors
Adaptive Optics (AO) has become the requisite equipment of the ground-based large solar telescope to correct the wavefront aberration induced by the atmospheric turbulence. Two generation solar AO systems, one is the 37-element loworder AO system with 2100Hz frame rate and the other is 151-element high-order AO system with 3500Hz frame rate, were successfully developed in 2013 and 2015 respectively. In this presentation, the development of the two AO systems for 1-m New Vacuum Solar Telescope (NVST) at Fuxian Solar Observatory (FSO) will be introduced and the solar high resolution observational results are presented.
The resolution of the astronomical object observed by the earth-based telescope is limited due to the atmospheric turbulence. Speckle image reconstruction method provides access to detect small-scale solar features near the diffraction limit of the telescope. This paper describes the implementation of the reconstruction of images obtained by the 1-m new vacuum solar telescope at Full-Shine solar observatory. Speckle masking method is used to reconstruct the Fourier phases for its better dynamic range and resolution capabilities. Except of the phase reconstruction process, several problems encounter in the solar image reconstruction are discussed. The details of the implement including the flat-field, image segmentation, Fried parameter estimation and noise filter estimating are described particularly. It is demonstrated that the speckle image reconstruction is effective to restore the wide field of view images. The qualities of the restorations are evaluated by the contrast ratio. When the Fried parameter is 10cm, the contrast ratio of the sunspot and granulation can be improved from 0.3916 to 0.6845 and from 0.0248 to 0.0756 respectively.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.