KEYWORDS: Data modeling, Modeling, Mathematical modeling, Electrodes, Actuators, Head, Electronic filtering, Systems modeling, Control systems design, Smart structures
This paper presents experimental and theoretical analysis of an electrorheological (ER) damper. To describe the practical damper characteristics on force vs. velocity and force vs. displacement responses, a new alternative to existing models is proposed. On the basis of an Eyring model, Eyring-plastic model is constructed by the combination of simple nonlinear functions. Therefore, the Eyring-plastic model has the advantage to be simple in its design and formulation, even though it is in the form of a nonlinear function. In addition, the Eyring-plastic model can capture quite well the practical damper responses, particularly, in both the preyield and the postyield states. An ER damper is configured and its damping force under various electric fields and excitation frequencies is experimentally tested. On the basis of the damper response tested, the Eyring-plastic model is constructed and its validation is proved by comparing the experimental and predicted damper data on force vs. velocity and force vs. displacement responses.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.