Eye blink detection is one of the important problems in computer vision. It has many applications such as face live
detection and driver fatigue analysis. The existing methods towards eye blink detection can be roughly divided into two
categories: contour template based and appearance based methods. The former one usually can extract eye contours
accurately. However, different templates should be involved for the closed and open eyes separately. These methods are
also sensitive to illumination changes. In the appearance based methods, image patches of open-eyes and closed-eyes are
collected as positive and negative samples to learn a classifier, but eye contours can not be accurately extracted. To
overcome drawbacks of the existing methods, this paper proposes an effective eye blink detection method based on an
improved eye contour extraction technique. In our method, eye contour model is represented by 16 landmarks therefore
it can describe both open and closed eyes. Each landmark is accurately recognized by fast classifier which is trained from
the appearance around this landmark. Experiments have been conducted on YALE and another large data set consisting
of frontal face images to extract the eye contour. The experimental results show that the proposed method is capable of
affording accurate eye location and robust in closed eye condition. It also performs well in the case of illumination
variants. The average time cost of our method is about 140ms on Pentium IV 2.8GHz PC 1G RAM, which satisfies the
real-time requirement for face video sequences. This method is also applied in a face live detection system and the
results are promising.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.