The demand for improved radiometric accuracy of the remote sensing instrumentation used for diagnostic applications involving hot gas emission spectroscopy requires regular “in-field” recalibration. The most convenient calibration source for such applications is a large emitting area blackbody capable of operating at temperatures approaching 1000 K which is also compact and portable. NPL in collaboration with the University of Reading have designed and assembled a large emitting area blackbody that meets these requirements. The blackbody design is based on a grooved base that is electrically heated to temperatures up to 1000 K. The base is coated with a high emissivity coating, which does not deteriorate during prolonged heating under atmospheric conditions. This base is enclosed by a specularly reflecting cavity that is water-cooled. Monte Carlo calculations were used to design the shapes of the base and reflective cavity to ensure that despite a cavity depth of 203 mm and a black body aperture diameter of 102 mm, the spectral radiance of the blackbody is known with a 1% uncertainty in the 2.5 μm to 14 μm wavelength range. The presentation will describe the design of the blackbody and the processes used for selecting the black coating of the base and the reflective coating of the specularly reflecting cavity.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.