KEYWORDS: RGB color model, Tumors, Principal component analysis, Tissues, Cancer detection, Object detection, Visualization, Hyperspectral imaging, Data modeling
The current advances in Whole-Slide Imaging (WSI) scanners allow for more and better visualization of histological slides. However, the analysis of histological samples by visual inspection is subjective and could be challenging. State-of-the-art object detection algorithms can be trained for cell spotting in a WSI. In this work, a new framework for the detection of tumor cells in high-resolution and high-detail using both RGB and Hyperspectral (HS) imaging is proposed. The framework introduces techniques to be trained on partially labeled data, since labeling at the cellular level is a time and energy-consuming task. Furthermore, the framework has been developed for working with RGB and HS information reduced to 3 bands. Current results are promising, showcasing in RGB similar performance as reference works (F1-score = 66.2%) and high possibilities for the integration of reduced HS information into current state-of-art deep learning models, with current results improving the mean precision a 6.3% from synthetic RGB images.
Hyperspectral (HS) imaging (HSI) is a novel technique that allows a better understanding of materials, being an improvement respect to other imaging modalities in multiple applications. Specifically, HSI technology applied to breast cancer histology, could significantly reduce the time of tumor diagnosis at the histopathology department. First, histological samples from twelve different breast cancer patients have been prepared and examined. Second, they were digitally scanned, using RGB (Red-Green-Blue) whole-slide imaging, and further annotated at cell level. Then, the annotated regions were captured with an HS microscopic acquisition system at 20× magnification, covering the 400-1000 nm spectral range. The HS data was registered (through synthetic RGB images) to the whole-slide images, allowing the transfer of accurate annotations made by pathologists to the HS image and extract each annotated cell from such image. Then, both spectral and spatial-spectral classifications were carried out to automatically detect tumor cells from the rest of the coexisting cells in the breast tissue (fibroblasts and lymphocytes). In this work, different supervised classifiers have been employed, namely kNN (k-Nearest-Neighbors), Random Forest, DNN (Deep Neural Network), Support Vector Machines (SVM) and CNN (Convolutional Neural Network). Test results for tumor cells vs. fibroblast classification show that the kNN performed with the best sensitivity/specificity (64/52%) trade-off and the CNN achieved the best sensitivity and AUC results (96% and 0.91, respectively). Moreover, at the tumor cells vs. lymphocyte classification, kNN also provided the best sensitivity-specificity ratio (58.47/58.86%) and an F1-score of 74.12%. The SVM algorithm also provided a high F-score result (70.38%). In conclusion, several machine learning algorithms provide promising results for cell classification in breast cancer tissue and so, future work must include these discoveries for faster cancer diagnosis.
Hyperspectral imaging (HSI), which acquires up to hundreds of bands, has been proposed as a promising imaging modality for digitized histology beyond RGB imaging to provide more quantitative information to assist pathologists with disease detection in samples. While digitized RGB histology is quite standardized and easy to acquire, histological HSI often requires custom-made equipment and longer imaging times compared to RGB. In this work, we present a dataset of corresponding RGB digitized histology and histological HSI of breast cancer, and we develop a conditional generative adversarial network (GAN) to artificially synthesize HSI from standard RGB images of normal and cancer cells. The results of the GAN synthesized HSI are promising, showing structural similarity (SSIM) of approximately 80% and mean absolute error (MAE) of 6 to 11%. Further work is needed to establish the ability of generating HSI from RGB images on larger datasets.
In recent years, hyperspectral imaging (HSI) has been shown as a promising imaging modality to assist pathologists in the diagnosis of histological samples. In this work, we present the use of HSI for discriminating between normal and tumor breast cancer cells. Our customized HSI system includes a hyperspectral (HS) push-broom camera, which is attached to a standard microscope, and home-made software system for the control of image acquisition. Our HS microscopic system works in the visible and near-infrared (VNIR) spectral range (400 - 1000 nm). Using this system, 112 HS images were captured from histologic samples of human patients using 20× magnification. Cell-level annotations were made by an expert pathologist in digitized slides and were then registered with the HS images. A deep learning neural network was developed for the HS image classification, which consists of nine 2D convolutional layers. Different experiments were designed to split the data into training, validation and testing sets. In all experiments, the training and the testing set correspond to independent patients. The results show an area under the curve (AUCs) of more than 0.89 for all the experiments. The combination of HSI and deep learning techniques can provide a useful tool to aid pathologists in the automatic detection of cancer cells on digitized pathologic images.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.