Autonomous driving in off-road environments is challenging as it does not have a definite terrain structure. Assessment of terrain traversability is the main factor in deciding the autonomous driving capability of the ground vehicle. Traversability in off-road environments is defined as the drivable track on the trails by different vehicles used in autonomous driving. It is very crucial for the autonomous ground vehicle (AGV) to avoid obstacles such as trees, boulders etc. while traversing through the trails. The goal of this research has three main objectives: a) collection of 2D camera data in the off-road / unstructured environment, b) annotation of 2D camera data depending on the vehicles’ ability to drive through the trails , and c) application of semantic segmentation algorithm on the labeled dataset to predict the trajectory based on the type of ground vehicle. Our models and labeled datasets will be publicly available.
Autonomous navigation (also known as self-driving) has rapidly advanced in the last decade for on-road vehicles. In contrast, off-road vehicles still lag in autonomous navigation capability. Sensing and perception strategies used successfully in on-road driving fail in the off-road environment. This is because on-road environments can often be neatly categorized both semantically and geometrically into regions like driving lane, road shoulder, and passing lane and into objects like stop sign or vehicle. The off-road environment is neither semantically nor geometrically tidy, leading to not only difficulty in developing perception algorithms that can distinguish between drivable and non-drivable regions, but also difficulty in the determination of what constitutes "drivable" for a given vehicle. In this work, the factors affecting traversability are discussed, and an algorithm for assessing the traversability of off-road terrain in real time is developed and presented. The predicted traversability is compared to ground-truth traversability metrics in simulation. Finally, we show how this traversability metric can be automatically calculated by using physics-based simulation with the MSU Autonomous Vehicle Simulator (MAVS). A simulated off-road autonomous navigation task using a real-time implementation of the traversability metric is presented, highlighting the utility of this approach.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.