Studying magnetization configurations of ever more complex magnetic structures has become a major challenge in the past decade, especially at ultrashort timescales. Most of current approaches are based on the analysis of polarization and magnetization-dependent reflectivity. We introduced a different concept, centered on the coupling of magnetic structures with light beams carrying orbital angular momentum (OAM), which was recently tested it in an experiment with magnetic vortices. Upon reflection by a magnetic vortex, an incoming beam with a well-defined OAM ℓ gets enriched in the neighboring OAM modes ℓ ± 1. It results in anisotropic far-field profiles, which leads to a magnetic helicoidal dichroism (MHD) signal. In this paper we provide a detailed analysis of MHD for the case of a magnetic vortex, providing an intuitive explanation in terms of transverse MOKE. The analysis of MHD allows to retrieve the complex magneto-optical constants. This method, which does not require any polarimetric measurement, is a new promising tool for the identification and analysis of magnetic configurations such as vortices, with a possible extension to the femtosecond to attosecond time resolution.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.