QUaD is a ground-based high-resolution (up to l ≈ 2500) instrument designed to map the polarisation of the Cosmic Microwave Background and to measure its E-mode and B-mode polarisation power spectra. QUaD comprises a bolometric array receiver (100 and 150 GHz) and re-imaging optics on a 2.6-m Cassegrain telescope 2. It will operate for two years and begin observations in 2005. CMB polarisation measurements will require not only a significant increase in sensitivity over earlier experiments but also a better understanding and control of systematic effects particularly those that contribute to the polarised signal. To this end we have undertaken a comprehensive quasi-optical analysis of the QUaD telescope. In particular we have modelled the effects of diffraction on beam propagation through the system. The corrugated feeds that couple radiation from the telescope to phase-sensitive bolometers need to have good beam symmetry and low sidelobe levels over the required bandwidth. It is especially important that the feed horns preserve the polarisation orientation of the incoming fields. We have used an accurate mode-matching model to design such feed horns. In this paper we present the diffraction analysis of the QUaD front-end optics as well as the electromagnetic design and testing of the QUaD corrugated feeds.
We look at anticipated science results achievable with QUaD, a ground-based experiment to measure the polarization of the CMB from the South Pole, and describe the features that will enable it to measure this weak polarized signal. We show that QUaD can make a high resolution measurement of the polarization signals on small angular scales. This will lead to tighter constraints on the key cosmological parameters and could also put new limits on the inflationary model.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.