X-ray absorption fine-structure (XAFS) spectroscopy is a well-established technique capable of extracting information about a material’s electronic and lattice structure with atomic resolution. While the near-edge region (XANES) of a XAFS spectrum provides information about the electronic configuration, structural information is extracted from the extended XAFS (EXAFS) spectrum, consisting of several hundreds of eV above the absorption edge. With the advent of high harmonic sources, reaching photon energies in soft x-ray (SXR) region, it now becomes possible to connect the spectroscopic capabilities of XAFS to the unprecedented attosecond temporal resolution of a high harmonic source allowing the observation of electronic and lattice dynamics in real time [1,2].
Layered materials, such the transition-metal dichalcogenide TiS2 or graphite, are an emerging class of materials with attractive structural and electronic properties as they can be thinned to a single atomic layer with electron mobilities resembling that of a metal, semiconductor, or semi-metal.
In this work, we utilized broadband water-window-covering attosecond SXR pulses (300 as, ranging from 200
- 550 eV) capable of accessing orbital-specific K- and L-edges of such layered materials to perform transient XAFS
with attosecond time resolution [3,4].
[1] Teichmann, S. et al, "0.5-keV soft x-ray attosecond continua", Nat. Commun. 7, 11493 (2016).
[2] Cousin S. et al, "Attosecond streaking in the water window: a new regime of attosecond pulse characterization", Phys. Rev. X, 7, 041030 (2017).
[3] Buades, B. et al., “Dispersive soft x-ray absorption fine-structure spectroscopy in graphite with an attosecond pulse”, Optica 5 (5), 502 (2018).
[4] Buades, B. et al., “Attosecond-resolved petahertz carrier motion in semi-metallic TiS2”, arXiv: 1808.06493 (2018).
The development of coherent light sources with emission in the mid-IR is currently undergoing a remarkable revolution. The mid-IR spectral range has always been of tremendous interest, mainly to spectroscopists, due to the ability of mid-IR light to access rotational and vibrational resonances of molecules which give rise to superb sensitivity upon optical probing [1-3]. Previously, high energy resolution was achieved with narrowband lasers or parametric sources, but the advent of frequency comb sources has revolutionized spectroscopy by providing high energy resolution within the frequency comb structure of the spectrum and at the same time broadband coverage and short pulse duration [4-6]. Such carrier to envelope phase (CEP) controlled light waveforms, when achieved at ultrahigh intensity, give rise to extreme effects such as the generation of isolated attosecond pulses in the vacuum to extreme ultraviolet range (XUV) [7]. Motivated largely by the vast potential of attosecond science, the development of ultraintense few-cycle and CEP stable sources has intensified [8], and it was recognized that coherent soft X-ray radiation could be generated when driving high harmonic generation (HHG) with long wavelength sources [9-11]. Recently, based on this concept, the highest waveform controlled soft X-ray flux [12] and isolated attosecond pulse emission at 300 eV [13] was demonstrated via HHG from a 1850 nm, sub-2-cycle source [14]. Within strong field physics, long wavelength scaling may lead to further interesting physics such as the direct reshaping of the carrier field [15], scaling of quantum path dynamics [16], the breakdown of the dipole approximation [17] or direct laser acceleration [18]. The experimental development of long wavelength light sources therefore holds great promise in many fields of science and will lead to numerous applications beyond strong field physics and attosecond science. In this paper, we present the first mid-IR optical parametric chirped pulse amplifier (OPCPA) operating at a center wavelength of 7 μm with output parameters suitable already for strong-field experiments. It is also the first demonstration of an Optical Parametric Chirped Pulse Amplifier (OPCPA) using a 2 μm laser pump source which enables the use of non-oxide nonlinear crystals with typically limited transparency at 1 mm wavelength. This new OPCPA system is all-optically synchronized and generates 0.55 mJ energy, CEP stable optical pulses. The pulses are currently compressed to sub-8 optical cycles but support a sub-4 cycle pulse duration. The discrepancy in compression is due to uncompensated higher order phase from the grating compressor which will be addressed in the future.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.