KEYWORDS: Solar cells, Internal quantum efficiency, Perovskite, Luminescence, Terahertz spectroscopy, Quantum efficiency, Time resolved spectroscopy, Spectroscopy, Diffusion, Probability theory
Internal quantum efficiency (IQE) is a key parameter determining solar cell power conversion efficiency. While reported IQEs of metal-halide perovskite solar cells are often close to one, the contributions of photoluminescence reabsorption (PLr) and surface recombination (SR) to IQE has not been elucidated. In this work, both effects are examined by photoluminescence spectroscopies and time-resolved terahertz spectroscopy (TRTS). Then PLr rate and SR velocity are extracted from TRTS kinetics by diffusion theory. At last a model is proposed to calculate the carrier-collection probability and discuss contributions of PLr and SR on the IQE.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.