Straight and bent self-written waveguides (SWWs) are formed within a photomonomer mixture by means of a self-trapping effect when a single laser beam or two laser beams with tilt are propagated inside. These SWWs can be used as optical interconnects in integrated photonic circuits if two laser beams are launched in opposite directions into the photomonomer. In this work, two kinds of photo-polymerization models are implemented to simulate the SWWs. In the phenomenological model, the refractive index increases directly with actinic laser intensity, whereas the diffusion model has a more complex variation of refractive index profile which takes into account the individual redistribution of mixture components. Both these models are linked with a CrankNicholson based Beam Propagation Method (CN-BPM) to simulate the time varying light distribution within the polymer coupling structures. Differences are observed in the numerical simulation results for straight and bent SWWs with respect to the temporal evolution of refractive index within the mixture, corresponding beam intensity profiles and curing time. In addition, we show that a saturation of refractive index change leads to the polymerization of surrounding monomer and, as consequence, to corrupted light guiding. We report on the minimum refractive index modulation that is required for optimal light guiding within the SWW.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.