We demonstrate electrically switchable nanoantennas and metasurfaces from metallic polymers. Such nanoantennas show well-pronounced plasmonic resonances and can be electrically switched fully off and back on by applying CMOS compatible voltages of ±1V. Operation speed is as fast as 30 Hz. Utilizing this concept, we realize, on the one hand, an electrically switchable metallic polymer metasurface for ultra-high-contrast active beam switching. On the other hand, we show an electro-active metaobjective comprising two metalenses-on-demand. By using gel electrolytes, our metadevices can be integrated into state-of-the-art on-chip electro-optic components.
We present a fully automated laser system with low-intensity noise for coherent Raman scattering microscopy. The robust two-color system is pumped by a solid-state oscillator, which provides Stokes pulses fixed at 1043 nm. The tunable pump pulses of 750 to 950 nm are generated by a frequency-doubled fiber-feedback femtosecond optical parametric oscillator. The resulting pulse duration of 1.2 ps provides a viable compromise between optimal coherent Raman scattering signal and the necessary spectral resolution. Thus a spectral range of 1015 to 3695 cm − 1 with spectral resolution of <13 cm − 1 can be addressed.
We present an ultra‐low noise, near to mid infrared light source for a variety of multiphoton imaging and spectroscopy techniques. The system is based on an optical parametric oscillator (OPO) pumped by a femtosecond Ytterbium solid state oscillator with tens of megahertz repetition rate. This light source supplies three intrinsically synchronized light beams at wavelengths: 1040 nm, 1400-2000 nm (tunable) and 2200-4200 nm (tunable). Without active stabilization, the OPO preserves the shot-noise limited performance of the Yb-oscillator, along with a high long-term stability and a TEM00 beam profile. While this tuning range is already suitable for two- and three-photon microscopy, it now becomes possible to address vibrational modes and thus molecular specificity by employing further frequency conversion stages. Tailored frequency doubling provides either a narrow linewidth (0.5-1.2 nm) or a broadband (>40 nm) beam, tunable from 750-950 nm.
The fixed Stokes beam of the Yb-oscillator can directly be used as a pump source for coherent Raman scattering such as SRS or CARS spectroscopy/microscopy. To this end, we will demonstrate the capability of our system for both SRS imaging at video rate with a spectral precision of 13 cm-1 as well as SRS spectroscopy with more than 400 cm-1 bandwidth in a single shot. By further mixing the two output beams of the OPO, we are able to additionally produce mid-infrared light that is tunable from 4-16 µm. With the help of vibrational sum frequency generation, our system will allow us to cover a spectral range of 700-7000 cm-1.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.