Leaf water content (LWC) is an essential constituent of plant leaves that determines vegetation health and its productivity. An accurate and on-time measurement of water content is crucial for planning irrigation, forecasting drought, and predicting woodland fire. The retrieval of LWC from visible to shortwave infrared (VSWIR: 0.4 to 2.5 μm) has been extensively investigated but little has been done in the mid- and thermal-infrared (MIR and TIR: 2.50 to 14.0 μm) windows of electromagnetic spectrum. This study is mainly focused on retrieval of LWC from MIR and TIR, using genetic algorithm (GA) integrated with partial least square regression (PLSR). GA fused with PLSR selects spectral wavebands with high predictive performance, i.e., yields high adjusted-R2 and low root-mean-square error (RMSE). In our case, GA-PLSR selected eight variables (bands) and yielded highly accurate models with adjusted-R2 of 0.93 and RMSE cross validation equal to 7.1%. This study also demonstrated that MIR is more sensitive to the variation in LWC as compared to TIR. However, the combined use of MIR and TIR spectra enhances the predictive performance in retrieval of LWC. The integration of GA and PLSR not only increases the estimation precision by selecting the most sensitive spectral bands but also helps in identifying the important spectral regions for quantifying water stresses in vegetation. The findings of this study will allow the future space missions (like HyspIRI) to position wavebands at sensitive regions for characterizing vegetation stresses.
Leaf Water Content (LWC) is an essential constituent of plant leaves that determines vegetation heath and its productivity. An accurate and on-time measurement of water content is crucial for planning irrigation, forecasting drought and predicting woodland fire. The retrieval of LWC from Visible to Shortwave Infrared (VSWIR: 0.4-2.5 μm) has been extensively investigated but little has been done in the Mid and Thermal Infrared (MIR and TIR: 2.50 -14.0 μm), windows of electromagnetic spectrum. This study is mainly focused on retrieval of LWC from Mid and Thermal Infrared, using Genetic Algorithm integrated with Partial Least Square Regression (PLSR). Genetic Algorithm fused with PLSR selects spectral wavebands with high predictive performance i.e., yields high adjusted-R2 and low RMSE. In our case, GA-PLSR selected eight variables (bands) and yielded highly accurate models with adjusted-R2 of 0.93 and RMSEcv equal to 7.1 %. The study also demonstrated that MIR is more sensitive to the variation in LWC as compared to TIR. However, the combined use of MIR and TIR spectra enhances the predictive performance in retrieval of LWC. The integration of Genetic Algorithm and PLSR, not only increases the estimation precision by selecting the most sensitive spectral bands but also helps in identifying the important spectral regions for quantifying water stresses in vegetation. The findings of this study will allow the future space missions (like HyspIRI) to position wavebands at sensitive regions for characterizing vegetation stresses.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.