We introduce an enhanced version of a full-color, RGB hybrid LD-SLED light source module for near-to-eye display systems, predominantly tailored for laser beam scanning (LBS) architectures. This light source module integrates blue and green semiconductor laser diodes (LD) emitting at wavelengths of 455 nm and 520 nm, respectively, along with a red superluminescent diode (SLED) operating at 638 nm. Besides the RGB emitter devices, this micro-RGB module includes collimation optics, wavelength-combining filters, and a prism pair to achieve circular output beams, all packaged with an innovative micro-optical, free-space bench architecture. With a compact footprint of 5.5 mm x 8.6 mm, this module produces collimated, circular, and collinearly aligned RGB beams with minimal divergence and large diameters of 1.0-1.3 mm at the module output. This third generation of an micro-RGB light source module delivers up to 50 mW of optical power per color at a total power dissipation of 1.2 W.
We present, to the best of our knowledge, the first compact, full-color, hybrid RGB LD-SLED light source module designed for near-to-eye display systems. This module integrates a blue and green semiconductor laser diode (LD) at a wavelength of 453 nm and 520 nm, respectively, and a red superluminescent diode (SLED) at 639 nm in combination with a novel micro-optical, free-space architecture. The light source module includes circularizing optics, wavelengthcombining filters, and a single aspheric collimation lens. The light source module has a compact footprint of 7.7 mm x 10.8 mm and generates collimated, circular and collinearly aligned RGB beams with low divergence and large diameters in the range of 1.7 mm to 2.2 mm at the optical output. The current generation of this light source module delivers up to 15 mW of optical power per color, with a total power dissipation value of only 430 mW.
We demonstrate, to our knowledge for the first time, an integrated light source module that emits broadband amplified spontaneous emission (ASE) light from two superluminescent diodes (SLEDs) through a single-mode fiber output simultaneously on two orthogonal polarizations. The dual-polarization SLED source is realized on a free-space, temperature-stabilized, micro-optical bench and integrated in a 14-pin butterfly module. The broadband light output from the single-mode fiber has twice the output power of a single-SLED source and achieves a polarization extinction ratio (PER) of 0 dB when the relative power levels of both SLED sources are carefully balanced.
We demonstrate the first fiber-coupled, broadband master oscillator power amplifier (MOPA) module where amplified spontaneous emission (ASE) light from an 840-nm superluminescent diode (SLED) is amplified by a low-confinement,
broadband 840-nm semiconductor optical amplifier (SOA), generating power levels of more than 60 mW in single-mode fibers. The SLED and SOA are integrated, without an optical isolator in between, in a compact 14-pin Butterfly module on a temperature-stabilized optical bench. The highly-polarized ASE output has a polarization extinction ratio (PER) of more than 30 dB and a 10-dB bandwidth of more than 50 nm, resulting in a coherence length of 10 microns in air.
We demonstrate a miniaturized, full-color RGB light source module for near-to-eye display systems, incorporating three semiconductor laser diodes (LDs) that are integrated on a free-space, micro-optical bench together with collimation optics and wavelength filters. The ultra-compact package has a footprint of 4.4 mm x 4.15 mm with a height of 2.9 mm (0.053 cm3) and an optical output window for the collimated and collinearly aligned RGB beams. The light source module delivers up to 10 mW per color at low power dissipation values of 640 mW and provides low-divergent output beams having a high circularity and a diameter of 250-650 μm at a reference distance of 50 mm.
We demonstrate, to our knowledge for the first time, an integrated broadband master oscillator power amplifier (MOPA) module where amplified spontaneous emission (ASE) light from an 840-nm superluminescent diode (SLED) is amplified by a low-confinement, broadband 840-nm semiconductor optical amplifier (SOA) in order to generate power levels of more than 100 mW in free space. The SLED-SOA MOPA architecture is realized on a free-space, temperaturestabilized, micro-optical bench and integrated in a 14-pin butterfly module with an optical window output. The highlypolarized ASE light from the SLED is intrinsically aligned to the polarization of the SOA, thereby providing high-power amplified ASE light with an extinction ratio of more than 20 dB and with an optical bandwidth of more than 35 nm FWHM. Optimization of the ASE input signal and of the booster SOA design may either increase the optical bandwidth of the amplified ASE output signal or may also increase the output power levels to a regime of 200-300 mW.
We present the first light source module that is realized with RGB superluminescent LEDs in a compact 14-pin butterfly housing for speckle-free display applications. The module provides a free-space output with collimated RGB beams that are colinearly aligned having 10 mW output power per color.
Superluminescent light emitting diodes (SLEDs) have beam-like optical output similar to laser diodes (LDs) while offering a broader emission wavelength spectrum. They represent, therefore, an interesting alternative to conventional LDs for applications where a short coherence length or low speckle noise are required. Visible SLEDs emitting in the red, blue, and green are ideal candidates for the manufacturing of speckle-free light sources in portable or wearable compact projection systems. In this paper, we review the current status of EXALOS’ GaN-based SLED technology in the violet-blue spectral range and report on our recent progress in terms of performance for devices with 440-460 nm emission. Furthermore, we discuss the challenges in achieving light output at even longer wavelengths. As a matter of fact, lower refractive index contrast between the waveguiding and cladding layers, decreased p-type doping efficiency when growing at low temperatures, low crystal quality and thermal stability of the active region have to be addressed and solved in order to achieve green emission. The epitaxial structures were grown by metalorganic vapor phase epitaxy (MOVPE) on c-plane freestanding GaN substrates. Growth was followed by standard fabrication of SLEDs with a ridge waveguide design. A record CW output power of 150 mW (at an operating current of 330 mA) and a wall-plug efficiency (WPE) of 8% have been obtained at an emission wavelength >440 nm.
We report on the reliability of GaN-based super-luminescent light emitting diodes (SLEDs) emitting at a wavelength of 405 nm. We show that the Mg doping level in the p-type layers has an impact on both the device electro-optical characteristics and their reliability. Optimized doping levels allow decreasing the operating voltage on single-mode devices from more than 6 V to less than 5 V for an injection current of 100 mA. Furthermore, maximum output powers as high as 350 mW (for an injection current of 500 mA) have been achieved in continuous-wave operation (CW) at room temperature. Modules with standard and optimized p-type layers were finally tested in terms of lifetime, at a constant output power of 10 mW, in CW operation and at a case temperature of 25 °C. The modules with non-optimized p-type doping showed a fast and remarkable increase in the drive current during the first hundreds of hours together with an increase of the device series resistance. No degradation of the electrical characteristics was observed over 2000 h on devices with optimized p-type layers. The estimated lifetime for those devices was longer than 5000 h.
We show a broad range of swept source performances based on a highly-flexible external cavity laser architecture.
Specifically, we demonstrate a 40-kHz 1300-nm swept source with 10 mm coherence length realized in a compact
butterfly package. Fast wavelength sweeping is achieved through a 1D 20-kHz MEMS mirror in combination with an
advanced diffraction grating. The MEMS mirror is a resonant electrostatic mirror that performs harmonic oscillation only
within a narrow frequency range, resulting in low-jitter and long-term phase-stable sinusoidal bidirectional sweep
operation with an A-scan rate of 40 kHz. The source achieves a coherence length of 10 mm for both the up- and downsweep
and an OCT sensitivity of 105 dB.
Since pico-projectors were starting to become the next electronic "must-have" gadget, the experts were discussing which
light-source technology seems to be the best for the existing three major projection approaches for the optical scanning
module such as digital light processing, liquid crystal on silica and laser beam steering. Both so-far used light source
technologies have distinct advantages and disadvantages. Though laser-based pico-projectors are focus-free and deliver a
wider color gamut, their major disadvantages are speckle noise, cost and safety issues. In contrast, projectors based on
cheaper Light Emitting Diodes (LEDs) as light source are criticized for a lack of brightness and for having limited focus.
Superluminescent Light Emitting Diodes (SLEDs) are temporally incoherent and spatially coherent light sources
merging in one technology the advantages of both Laser Diodes (LDs) and LEDs. With almost no visible speckle noise,
focus-free operation and potentially the same color gamut than LDs, SLEDs could potentially answer the question which
light source to use in future projector applications. In this quest for the best light source, we realized visible SLEDs
emitting both in the red and blue spectral region. While the technology required for the realization of red emitters is
already well established, III-nitride compounds required for blue emission have experienced a major development only
in relatively recent times and the technology is still under development. The present paper is a review of the status of
development reached for the blue superluminescent diodes based on the GaN material system.
In this communication we report on the approaches to increase the brightness of Bookham's latest generations of high
power pump modules. Since the single-emitter laser diode is the essential building block in all module designs, the
optimization of the device design towards higher wall-plug efficiency, higher brightness and better reliability is one
focus of the ongoing development efforts at Bookham. By using an analytical simulation tool critical parameters for
efficient emitter-fiber coupling as the beam divergence and coupling scheme could be identified.
Coupling to the fiber Bragg grating (FBG) is a well-established technique of emission wavelength stabilization in single mode pump lasers used for instance in Er-doped fiber amplifiers (see e.g. Ref. 1). The output power of these devices usually does not exceed 1 W due to limited heat transfer from narrow active stripe of the single mode laser diode. To satisfy increasing demand for wavelength-stabilized pump lasers with higher output power we attempted to extend FBG stabilization scheme to high power multimode broad area lasers. This scheme brings usual advantages of FBG stabilization such as environmental wavelength stability, compactness and low cost. Development work has been carried out using our reliable high power pump laser with output aperture of ~ 50 - 100 μm. The emission wavelength of the free running laser was around 960 nm at room temperature. The fiber gratings with reflection maximum at about 975 nm were written in a commercially available multimode fiber. In initial experiments the laser was coupled with discrete optics to the multimode fiber containing FBG. Introduction of the spectrally selective optical feedback locked the laser emission to the Bragg wavelength. The laser emission remained locked to this wavelength up to a maximum drive current of 8 A within a heat sink temperature range of 40°C in this experiment. The overall spectral width of stabilized laser emission facilitates effective and stable pumping into absorption lines as narrow as 5 nm FWHM. Similar results were obtained on the Bookham commercial pump modules with FBG in the output fiber. The modules emitted up 4 W of wavelength-stabilized power from the output fiber with 50 μm core diameter.
The performance of high-power pump-laser modules is strongly influenced by their thermal properties. In this paper we discuss the optimization of the device performance with respect to thermal properties, output power, wavelength stability, and device reliability using the example of our newest pump-laser generation that has been developed and qualified to support the high-end market of erbium-doped fiber amplifiers. A comparison of device properties obtained from modeling and measurements is presented at each design step. We report on the performance of fiber Bragg grating-stabilized telecom-grade modules yielding 600 mW fiber-coupled light output power.
We report on the development of a new cost-effective, small form-factor laser source at a wavelength of 980 nm. The laser module is based on proven technology commonly used for pump laser modules deployed in fiber amplifiers of telecommunication networks. The package uses a state-of-the-art 14-pin butterfly housing with a footprint of 30x15 mm2 with a Fabry-Perot AlGaAs-InGaAs pump laser diode mounted inside having an anti-reflection coating on its front facet. The light is coupled into a single-mode polarization-maintaining fiber with a mode-field diameter of 6.6 micrometer. The spectral properties of the source are defined by a fiber Bragg grating (FBG) that provides feedback in a narrow reflection band. The laser back facet and the FBG form a long resonant cavity of 1.7 m length in which laser light with a low coherence length of a few cm is generated. This configuration with the laser being operated in the coherence-collapse regime has the advantage of being robust against variations in the optical path, thus enabling stable and mode-hop free emission. The laser module has the following properties: a continuous-wave fiber output power exceeding 800 mW, a spectral bandwidth of less than 50 pm, a root-mean square power variation of less than 0.2 % from DC to 2 MHz over the entire power operating range, and a polarization extinction ratio of more than 20 dB. This is a compact, low noise, high power source for frequency conversion with nonlinear optical materials, such as blue light generation.
AlGaAs/InGaAs based high power pump laser diodes with wavelength of around 980 nm are key products within erbium doped fiber amplifiers (EDFA) for today's long haul and metro-communication networks, whereas InGaAsP/InP based laser diodes with 14xx nm emission wavelength are relevant for advanced, but not yet widely-used Raman amplifiers. Due to the changing industrial environment cost reduction becomes a crucial factor in the development of new, pump modules. Therefore, pump laser chips were aggressively optimized in terms of power conversion and thermal stability, which allows operation without active cooling at temperatures exceeding 70°C. In addition our submarine-reliable single mode technology was extended to high power multi-mode laser diodes. These light sources can be used in the field of optical amplifiers as well as for medical, printing and industrial applications. Improvements of pump laser diodes in terms of power conversion efficiency, fiber Bragg grating (FBG) locking performance of single mode devices, noise reduction and reliability will be presented.
The needle optimization technique is applied to the designing of broadband coatings with simultaneously specified intensity and phase derivatives targets. Specifically the designing of output couplers with the transmittance equal to 6 percent in the spectral region form 650 nm to 1100 nm is considered. Other targets include group delay dispersion upon transmission (GDDT) and group delay dispersion upon reflection (GDDR). Theoretical considerations exposing the nature of GDDT and GDDR oscillations are provided.
Femtosecond and picosecond pulses can find many applications if they can be produced with laser sources that are not only powerful and efficient but also compact and reliable. In continuous wave operation, diode pumping of solid-state lasers has allowed for a rapid progress towards powerful, compact and reliable sources, while the often used technique of Kerr lens modelocking for pulsed operation tends to be in conflict with requirements for diode-pumpable high power designs. Passive modelocking with semiconductor saturable absorber mirrors solves this problem as it relaxes the restrictions on the cavity design. We report on our recent achievements in this field. In particular we present a novel semiconductor device for dispersion compensation and various improved diode-pumped passively modelocked lasers. Also we show which laser parameters determine the stability of a passively modelocked lasers against Q-switching instabilities.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.