We consider the problem of automatic parameter selection in regularization-based radar image formation techniques. It
has previously been shown that non-quadratic regularization produces feature-enhanced radar images; can yield
superresolution; is robust to uncertain or limited data; and can generate enhanced images in non-conventional data
collection scenarios such as sparse aperture imaging. However, this regularized imaging framework involves some
hyper-parameters, whose choice is crucial because that directly affects the characteristics of the reconstruction. Hence
there is interest in developing methods for automatic parameter choice. We investigate Stein's unbiased risk estimator
(SURE) and generalized cross-validation (GCV) for automatic selection of hyper-parameters in regularized radar
imaging. We present experimental results based on the Air Force Research Laboratory (AFRL) "Backhoe Data Dome,"
to demonstrate and discuss the effectiveness of these methods.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.