We present the fabrication and testing of a prototype high-speed, quad-channel mid-board optics transceiver chipset and module applicable to VCSEL-based intra-satellite optical interconnects. The optical transceiver (OTRx) chipset comprises a VCSEL driver and a TIA integrated circuit (IC) both manufactured in IHP 130 nm SiGe BiCMOS process. The 4-channel OTRx module operates at 850 nm wavelength. It features low power consumption, a small form factor and it is pluggable on the host board through a micro edge card (MEC) connector. We present first functional test results in loop-back configuration at data rates up to 15 Gb/s per channel. The work is performed within the framework of H2020-SPACE-SIPHODIAS project. Additional presentation content can be accessed on the supplemental content page.
The EU-SIPhoDiAS project deals with the development of critical photonic building blocks needed for highperformance and low size, weight, and power (SWaP) photonics-enabled Very High Throughput Satellites (VHTS). In this presentation, we report on the design and fabrication activities during the first year of the project concerning the targeted family of digital and microwave photonic components. This effort aims to demonstrate components of enhanced reliability at technology readiness level (TRL) 7. Specifically, with respect to microwave photonic links, we report: (i) the design of Ka and Q-bands analogue photodetectors that will be assembled in compact packages, allowing for very high bandwidth per unit area and (ii) on the design of compact V-band GaAs electro-optic modulator arrays, which use a folded-path optical configuration to manage all fiber interfaces packaged opposite direct in-line RF feeds for ease of board layouts and mass/size benefits. With respect to digital links, we report on the development of 100 Gb/s (4 x 25 Gb/s) digital optical transceiver sub-assemblies developed using flip-chip mounting of electronic and opto-parts on a high-reliability borosilicate substrate. The transceiver chipset developed specifically for this project refers to fullycustom 25 Gb/s radiation hard (RH) VCSEL driver and TIA ICs designed in IHP’s 130 nm SiGe BiCMOS Rad-Hard process.
We present the development and verification testing of a high speed multimode, multicore transceiver technology for intra-satellite optical interconnects. We report the fabrication and functional testing of opto-parts including 25 Gb/s 850 nm VCSEL/PD as well as the verification testing of the VCSELs against radiation and lifetime performance. In addition we report the development and evaluation testing of a multi-core cable assembly that was fabricated and mated with MiniAVIM multi-core connectors to develop hi-rel multi-core optical patchcords for pigtailing the transceiver modules. The fiber optic, electronic and opto-parts were used to assemble the first ever fully packaged and pigtailed, six-core optical transceiver prototype module that operates at 25 Gb/s channel bit rate at an energy consumption of ∠4.5 mW/Gb/s.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.