X-ray Free Electron Laser (XFEL) radiation may transform diamond into graphite. Two X-ray pulses were used; the first as pump to trigger the phase transition and the second as probe performing X-ray diffraction. The experiment was performed at the SACLA XFEL facility at the beamline 3 experimental hutch 5. The samples were polycrystalline diamond. The pump and probe photon energies were 7 and 10.5 keV, respectively, and the delay between the X-ray pulses was varied from 0 to 286 fs. To provide a range of energy densities, the X-ray focus was adjusted between 150 nm and 1 um. The (111), (220) and (311) diffraction peaks were observed. The intensity of each diffraction peak decreased with time indicating a disordering of the crystal lattice. From a Debye-Waller analysis, the root-mean-square (rms) atomic displacement perpendicular to particular lattice planes are calculated. At higher fluences, the rms atomic displacement perpendicular to the (111) planes is significantly larger than that perpendicular to the (220) or (311) planes. By accepting two successive XFEL pulses at a time delay of 33 ms, graphite (002) diffraction was observed beginning at a threshold dose of 1.7 eV/atom. The experimental results will be compared with calculations using a hybrid model based on tight-binding molecular dynamics.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.