Over the last few years, multispectral and thermal remote sensing imagery from unmanned aerial vehicles (UAVs) has found application in agriculture and has been regarded as a means of field data collection and crop condition monitoring source. The integration of information derived from the analysis of these remotely sensed data into agricultural management applications facilitates and aids the stakeholder’s decision making. Whereas agricultural decision support systems (DSS) have long been utilised in farming applications, there are still critical gaps to be addressed; as the current approach often neglects the plant’s level information and lacks the robustness to account for the spatial and temporal variability of environmental parameters within agricultural systems. In this paper, we demonstrate the use of a custom built autonomous UAV platform in providing critical information for an agricultural DSS. This hexacopter UAV bears two cameras which can be triggered simultaneously and can capture both the visible, near-infrared (VNIR) and the thermal infrared (TIR) wavelengths. The platform was employed for the rapid extraction of the normalized difference vegetation index (NDVI) and the crop water stress index (CWSI) of three different plantations, namely a kiwi, a pomegranate, and a vine field. The simultaneous recording of these two complementary indices and the creation of maps was advantageous for the accurate assessment of the plantation's status. Fusion of UAV and soil scanner system products pinpointed the necessity for adjustment of the irrigation management applied. It is concluded that timely CWSI and NDVI measures retrieved for different crop growing stages can provide additional information and can serve as a tool to support the existing irrigation DSS that had so far been exclusively based on telemetry data from soil and agrometeorological sensors. Additionally, the use of the multi-sensor UAV was found to be beneficial in collecting timely, spatio-temporal information for the fusion with ground-based proximal sensing data. This research work was designed and deployed in the frame of the project "AGRO_LESS: Joint reference strategies for rural activities of reduced inputs".
Adoption of precision agriculture techniques requires the development of specialized tools that provide spatially distributed information. Both flying platforms and airborne sensors are being continuously evolved to cover the needs of plant and soil sensing at affordable costs. Due to restrictions in payload, flying platforms are usually limited to carry a single sensor on board. The aim of this work is to present the development of a vertical take-off and landing autonomous unmanned aerial vehicle (VTOL UAV) system for the simultaneous acquisition of high resolution vertical images at the visible, near infrared (VNIR) and thermal infrared (TIR) wavelengths. A system was developed that has the ability to trigger two cameras simultaneously with a fully automated process and no pilot intervention. A commercial unmanned hexacopter UAV platform was optimized to increase reliability, ease of operation and automation. The designed systems communication platform is based on a reduced instruction set computing (RISC) processor running Linux OS with custom developed drivers in an efficient way, while keeping the cost and weight to a minimum. Special software was also developed for the automated image capture, data processing and on board data and metadata storage. The system was tested over a kiwifruit field in northern Greece, at flying heights of 70 and 100m above the ground. The acquired images were mosaicked and geo-corrected. Images from both flying heights were of good quality and revealed unprecedented detail within the field. The normalized difference vegetation index (NDVI) was calculated along with the thermal image in order to provide information on the accurate location of stressors and other parameters related to the crop productivity. Compared to other available sources of data, this system can provide low cost, high resolution and easily repeatable information to cover the requirements of precision agriculture.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.