Coherent combination of laser beams is crucial for high-power laser development in various applications, including defense and communication systems. A filled-aperture coherent beam combiner is introduced, which includes polarization-maintaining fiber components, Electro-Optic Modulators, EDFA, a Multi-Plane Light Converter, and a feedback loop based on the Stochastic Parallel Gradient Descent algorithm. The SPGD algorithm allows precise control of the EOMs to achieve stable optical output power. The experimental results demonstrate the proposed approach achieves coherent combination of up to 6 input channels with high efficiency, negligible power loss duration, and precise control over thermal and mechanical perturbations. This technology is directly scalable for different wavelengths.
The ability to combine incoherent sources with attractive performances enable hardware integration issues to be resolved using stable, good quality off-the-shelf components. Some new generation imaging systems can be found in the mid-infrared (MIR). The most portable laser technology at this range, our Quantum Cascade Laser source can provide light power of around 2 W, industrial grade.
With the Multi-plane Light Conversion technique and a modal approach, we present non-coherent beam combiner for QCL with optimal beam quality, demonstrating the state of the art in terms of M2.
Multi-kilowatt Laser Beam Welding (LBW) processes must take up three challenges to keep improving its performance: handling high power, shaping the output beam and reducing focus shift. This will lead to a higher quality and speed as well as the capability to weld thicker parts.
We describe here a beam shaper compatible with industry standard equipment (collimation and focusing modules, arm robot and laser) handling up to 16kW average power delivering a mm-wide annular shape and reducing the focus shift. The LBW processes improvements on different materials are described.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.