Subwavelength moth eye structures are the nanostructures arranged uniformly whose feature size is less than the incident optical wavelength. These structures are promising to reduce the reflection of any material by creating a refractive index gradient profile at the interface surface. Mid-wave infrared (MWIR) is an important wavelength to investigate the moth eye structures for various applications like photovoltaic, solar cells and display technologies. In this paper, we fabricated two different moth eye structures Nano pillars and Nano holes using the simple and robust lithography technique. Using silicon dioxide as a hard mask, structures are transferred onto gallium arsenide substrate using different etching conditions. We compared the transmission of nanoholes and nanopillars structures and find out that nanoholes structures shows better transmittance in MWIR. We also obtained theoretical transmission data using rigorous coupled wave analysis (RCWA) which agrees with our experimental data. Moreover, Nano holes structures has an advantage over nanopillars structure as the former are resistant against contamination which therefore will not lead to decrease in transmission performance. The characterization results of the structures are obtained from SEM which shows the morphologies of the structures. Our approach is reproducible and can be easily applied to any optical devices which require antireflective property.
We have grown several high atomic number and high density ternary single crystals for variety of sensors. These materials are layered compounds (also designated as 2D) and have shown great promise for radiation and optical sensors. For achieving the good quality single crystals thermal characteristics are required, we have characterized thallium lead iodide, thallium mercury iodide and thallium gallium selenide synthesized from binary thallium and mercury and lead salts. Both thermal gravimetric and differential thermal analysis was performed from 50 to 9000C using two systems including a PerkinElmer Pyris 1 TGA and platinum sample pan in the nitrogen atmosphere. We will compare these data with available phase diagram for the grown stoichiometric compound.
Binary and ternary selenide crystals have been proven as multifunctional for optical sensors and laser applications. The aim of this study was to evaluate reactive flux growth process of the doped zinc selenide crystals and compared with bulk Physical Vapor Transport (PVT) grown large single crystals. The experimental process of synthesis involved PVP (Polyvinyl Pyrrolidone) flux dissolved in DI water which was heated at 65°C, stirred until all PVP dissolved. We added Se powder dissolved in ethanol and heated again for few minutes. We added ZnCl2 solution in ethanol/Se mixture and heated at well below 100 0C. Water and ethanol solvent was separated and placed at 200C. The residue material was doped with transition metal. This material was characterized for the luminescence and compared with the results of bulk crystals grown by PVD process.
It was demonstrated by Rai et al. in 2014 that artifacts can cause big problems in sensor materials and devices which have smaller than TEM lamella thickness. These artifacts are generated due to incongruency, eutectics and peritectic. In high power, high frequency and high sensitivity optical and electronic devices and systems, binary and ternary materials can be designed with superior properties. For example, halides, selenides and tellurides have wide transparency, high mobility and low absorption and wide transparency. It is extremely difficult to achieve to good quality materials due to multicomponent without knowledge of phase diagram, vapor pressure and other thermodynamic parameters. We will present excess thermodynamic functions of several binary and ternary industrially important materials such as ZnSe, GaSe, Tl3AsSe3 and Tl4HgI6 showing the stability of these materials. These parameters are indications of congruency and stability of melts near the growth temperature.
ZnSe has been a great choice for the rare-earth and transition metal doping to develop lasers. It is an excellent material for variety of optical applications due to wide transparency range, good fabricability and very low optical absorption similar to other selenides. NASA Marshall Space Flight Center has developed large crystals using physical vapor deposition (PVD) doped with transition metals for lasing. GaAs based quasi-phase matched structures have a lot of limitations including difficulty of frequency conversion from available high-power lasers. We are developing Si- and GaAs- based templates and using microfabrication process to deposit ZnSe using physical vapor transport (PVT) method. Experimental results of the fabrication of templates and growth of ZnSe on templates will be presented.
During the past several decades physical vapor transport (PVT) method has been extensively used for developing laser and electronic and optical sensor materials especially for incongruent and high vapor materials. Extensive careful studies of the NASA Marshall Space Flight Center on ZnSe growth by PVT has demonstrated that both thermal and solutal convection play very important roles on the quality of crystals and can be controlled by microgravity experiments. In case, the growth is performed by sputtering or systems such as DENTON, it is very difficult to control fluid flow and both thermal and solutal convective flows. We have demonstrated that by controlling the transport path, temperature of substrate and source and using purified source micron size thick ness can be achieved. We will present the experimental results of pure and doped lead selenide (PbSe) which demonstrated various morphologies and bandgap based on size of particles based on growth condition.
Polarity is very important in developing materials with colossal dielectric. To meet the demands for the tunable devices and high dielectric parallel plate capacitors, several perovskites such as CaCu3Ti4O12 (CCTO), La2/3Cu3Ti4O12 (LCTO) Pr2/3Cu3Ti4 O12 (PCTO) and several other materials of this class have been studied all over the world. Detailed studies showed that results vary a lot based on processing methods, such as powder vs. multi crystals and single crystals. In spite of great progress in processing, low resistivity and process driven variables in properties remain a big hurdle for its applications as a dielectric capacitor. We observed that dielectric values are significantly changed when these materials are exposed to chemicals and biological agents. We used parallel plate capacitor design for making chemical and biological sensors from CCTO member of this group. The data indicated huge difference in the dielectric and resistivity of the exposed samples.
Reduction of unwanted light reflection from a surface of a substance is very essential for the improvement of the performance of optical and photonic devices. Anti-reflection (AR) surface textures can be created on the surface of lenses and other optical elements to reduce the intensity of surface reflections. AR textures are indispensable in numerous applications, both low and high power, and are increasingly demanded on highly curved optical components.
Nanofabrication involves the fabrication of devices at the nanometer scale. In this work, we used nanofabrication to design and fabricate nanostructures of squares and hexagons of different spatial pitch and gap width in Gallium Arsenide (GaAs). These structures have a gap of 300nm, 400nm, and pitch of 900nm, 1000nm and 1100nm. The fabrication process involves solvent cleaning, deposition of silicon oxide, soft and hard bake, photolithography and development. Both wet and dry etching were used to fabricate the expected structures. Results from scanning electron microscopy (SEM) to examine the shapes of the fabricated arrays are presented in this study. By combining dry and wet etches, we obtained the desired shapes and depth of hexagons and squares with rounded edges. We report detailed fabrication processes and their corresponding results at each step.
Nano-arrays are an important structure for building chemical filters, photonic crystal waveguides, antireflection, or transmission devices. There are different methods of lithography to produce these nano-arrays, which include contact and projection photolithography, E-beam direct writing, and X-ray lithography. Contact photolithography is the most widely used method due to its simplicity and good for time and cost-saving. However, there are penalties that come with these benefits which include problems of generating Newton rings and difficulties of transferring patterns faithfully for situations at and beyond the diffraction limit.
In this work, we fabricated nano-arrays for high power antireflection applications using contact photolithography. Fortunately for the antireflection application, pattern periodicity is more important than obtaining the exact shape of the nanostructure. The fabricated structure, even though not the same as the original pattern, can still produce promising antireflection results. We have studied how the range of the distance between the mask and the photoresist affects the shapes of the produced patterns including holes, posts, and cones. The experimental results with different shapes and periodic patterns produced by different diffraction distances are explained with simulation results involving Fourier transformation and Fresnel diffraction of the mask patterns.
Electroencephalogram (EEG) recording is a widely used method to measure electrical activity in the brain. Rodent EEG brain recording not only is noninvasive but also has the advantages to accomplish full brain monitoring, compared with that of the invasive techniques like micro-electrode-arrays. In comparison to other noninvasive recording techniques, EEG is the only technique that can achieve sub-ms scale time resolution, which is essential to obtain causal relationship. In this work, we demonstrated a simple microfabrication process for developing a high-density polyimide-based rodent EEG recording cap. A 34-channel rodent electrode array with a total size of 11mmx8mm, individual electrode diameter 240μm and interconnect wire linewidth 35μm was designed and fabricated. For the fabrication process, we first deposit 350nm SiO2 on a silicon substrate. We then fabricate 6-7μm thick first layer polyimide caps with fingers and contact holes. Gold deposition and then lithography etching of 34 channel contact-electrodes and their interconnects were fabricated in the second step. The third step was to cover metal interconnects with a 10μm thick second layer polyimide, which was fabricated with photolithography before the final film released by HF undercutting etching of SiO2 layer. Then the fabricated EEG cap is interfaced with a commercial 34-channel female connector, which is soldered with 34-line wires. These wires are then connected to an ADC to record the EEG data in computer for post-processing. With polyimide, the EEG cap is biocompatible, and flexible which makes it suitable for good contact with rodent skulls.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.