In this study, we have used the policy-gradient based reinforcement learning approach to generate initial design for microscope objective lenses. The lens parameters within the defined ranges can be determined by the model based on the given specifications. The results obtained from our analysis suggest that the reinforcement learning model can generate appropriate starting points which expedite the convergence of the optimisation process.
The diffraction limit in traditional fluorescence microscopy (approximately 200 and 600 nanometers in lateral and axial
directions, respectively) has restricted the applications in
bio-medical research. However, over the last 10 years various
techniques have emerged to overcome this limit. Each of these techniques has its own characteristics that influence its
application in biology. This paper will show how two of the techniques, Structured Illumination Microscopy (SIM) and
PhotoActivated Localization Microscopy (PALM), complement each other in imaging of biological samples beyond the
resolution of classical widefield fluorescence microscopy. As a reference the properties of two well known standard
imaging techniques in this field, confocal Laser Scanning Microscopy (LSM) and Total Internal Reflection (TIRF)
microscopy, are compared to the properties of the two high resolution techniques.
Combined SIM/PALM imaging allows the extremely accurate localization of individual molecules within the context of
various fluorescent structures already resolved in 3D with a resolution of up to 100nm using SIM. Such a combined
system provides the biologist with an unprecedented view of the
sub-cellular organization of life.
Research in the life sciences increasingly involves the investigation of fast dynamic processes at the cellular and subcellular level. It requires tools to image complex systems with high temporal resolution in three-dimensional space. For this task, we introduce the concept of a fast fluorescence line scanner providing image acquisition speeds in excess of 100 frames per second at 512×512 pixels. Because the system preserves the capability for optical sectioning of confocal systems, it allows us to observe processes with three-dimensional resolution. We describe the principle of operation, the optical characteristics of the microscope, and cover several applications in particular from the field of cell and developmental biology. A commercial system based on the line scanning concept has been realized by Carl Zeiss (LSM 5 LIVE).
Research in the Life Sciences increasingly involves the investigation of fast dynamic processes at the cellular and sub-cellular level. It requires tools to image complex systems with high temporal resolution in three-dimensional space. For this task we introduce a fast fluorescence line scanner with image acquisition speeds in excess of 100 frames per second at 512x512 pixels and with a more than 10- fold increased sensitivity compared to point scanning confocal systems. Since the system preserves the capability for optical sectioning of confocal systems it allows to observe processes in three dimensions. We describe the principle of operation, the optical characteristics of the microscope and cover several applications in particular from the field of developmental biology.
Multi-color fluorescence microscopy has become a popular way to discriminate between multiple proteins, organelles or functions in a single cell or animal and can be used to approximate the physical relationships between individual proteins within the cell, for instance, by using Fluorescence Resonance Energy Transfer (FRET). However, as researchers attempt to gain more information from single samples by using multiple dyes or fluorescent proteins (FPs), spectral overlap between emission signals can obscure the data. Signal separation using glass filters is often impractical for many dye combinations. In cases where there is extensive overlap between fluorochromes, separation is often physically impossible or can only be achieved by sacrificing signal intensity. Here we test the performance of a new, integrated laser scanning system for multispectral imaging, the Zeiss LSM 510 META. This system consists of a sensitive multispectral imager and online linear unmixing functions integrated into the system software. Below we describe the design of the META device and show results from tests of the linear unmixing experiments using fluorochromes with overlapping emission spectra. These studies show that it is possible to expand the number of dyes used in multicolor applications.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.