Digital micromirror devices (DMDs) have become ubiquitous as spatial light modulators in the optics community, but ambiguity remains on how best to implement them in a laboratory environment. Here, we explicitly tackle the problem of generating high fidelity modes of structured light while maintaining optical efficiency. We present a theoretical characterization of the diffractive properties of the DMD, allowing us to motivate an alignment procedure that improves optical efficiency. We also present a set of best practice recommendations that cover aspects of DMD operation that are not immediately intuitive, these best practice recommendations ensure structured light is generated with the correct spatial profile and wavefront. We present experimental results that show efficiency improvements of up to 20%. Further, we demonstrate the creation of modes of structured light with fidelities in excess of 96%. The best practices presented here provide a pragmatic set of procedures for ensuring DMDs are used to their fullest potential.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.