Optical frequency combs are the enabling technology of a myriad of areas of science and engineering, where the line frequency spacing plays a fundamental role in their areas of application. Here, we review recent research work on the proposal and experimental demonstration of a set of signal processing techniques based on linear phase-only operations, inspired by the theory of the Talbot effect. These are aimed at re-distributing the energy of periodic spectral waveforms, such as frequency combs, achieving an arbitrary control of their line spacing. The energy-preserving nature of such techniques provides them with the capability of mitigating the noise of the signals of interest in a deterministic way, even allowing for the detection and measurement of signals entirely buried under the noise floor.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.