Computer vision systems are important for capturing environments, for facial recognition and as a way to scan objects for documenting and for manufacturing. One of the current challenges is to scan objects that change dynamically, whether rigid transformations or shape deformations. This paper presents a new system based on an RGB-D camera array, an array which is calibrated by means of a set of equations that relate the distance, angles and resolution of the cameras. The Iterative Closest Point algorithm is proposed for a fine alignment, as well with a process of reconstruction and elimination of noise by means of a Poisson distribution function. The system was exhaustively validated using two forms with different properties. When comparing the obtained result of the scan versus the real models by means of the distance of Hausdorff, errors of no more than 0.0045 mm were obtained. In addition, an experiment is performed by scanning the palm of the hand under deformations and movements. These results show that the system can scan static and non-static and dynamic forms, thereby demonstrating its usefulness for the reconstruction, analysis and manufacture of objects of different classes.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.