We show that metallic wires in CMOS chips can provide dual functionalities as electronic interconnects and as plasmonic/metamaterial devices. We demonstrate plasmonic resonances in a chip fabricated in a bulk Si CMOS foundry (TSMC, 65 nm node). Through minimal post processing, we integrate the designed nanophotonic CMOS chip with liquid crystals and demonstrate a high-speed liquid crystal-based electro-optic modulator.
THz encoders have distinct advantages for position sensing compared with other types of encoders, such as those based on optical and inductive sensors. A polarization-dependent metamaterial absorber reflects one polarization while absorbs the other, which makes it an ideal building block for the barcode of a THz encoder system. In this paper, we present the design, fabrication, and experiments of a THz polarization-dependent metamaterial absorber, and its application to a polarimetric sensing system.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.