Helical conjugated polymers are of great interest for their potential as sources of circularly polarized luminescence for numerous electro-optical device applications including display technologies. Due to their relatively strong absorption cross sections and high emissivity in the visible wavelength range, these materials permit a detailed investigation of how the transition between helical and random coil forms are driven by polymer structural features such as chain length and chemical defects as well as environmental properties such as solvent and temperature. Bulk methods such as circular dichroism, absorption, and fluorescence as well as single-particle microscopy is used to probe the helix-to-coil phase transition in a model chiral polyfuran and to determine whether the conformations favored in solution are retained in the solid state. In addition, the transient dynamics and the effects of chemical doping on the electronic properties of the helix and coiled forms are explored.
Helical conjugated polymers are of great interest for their potential as sources of circularly polarized luminescence for numerous electro-optical device applications including display technologies. Due to their relatively strong absorption cross sections and high emissivity in the visible wavelength range, these materials permit a detailed investigation of how the transition between helical and random coil forms are driven by polymer structural features such as chain length and chemical defects as well as environmental properties such as solvent and temperature. Bulk methods such as temperature dependent absorption, emission, and circular dichroism as well as single-particle microscopy are used to probe the helix-to-coil phase transition in a model chiral polyfuran and to determine whether the conformations favored in solution are retained in the solid state. In addition, the transient dynamics and the effects of chemical doping on the electronic properties of the helix and coiled forms are explored.
Organic semiconductors are commonly used for the development optoelectronic devices. However, these materials degrade rapidly in the presence of light and oxygen. we expand upon our previously methods of using thin metal films to enhance the stability of a polymer via metal enhanced fluorescence. When overlap of the plasmon peak and peak fluorescence of the polymer is achieved the radiative decay rate increases. The plasmon can be tuned via changing the deposition time and current settings of the sputter coater used for coating. By obtaining fluorescence images of the polymer deposited on the metal film compare to on glass in ambient air, a high degree of stabilization is found via plasmonic interactions. Lifetimes were also obtained of the polymer on glass, an electron transporting layer, and a gold film to compare the changes in lifetime from plasmonic interactions versus charge transfer. The usefulness of plasmonic for organic solar cell materials was probed in this way.
Organic semi-conductors are widely used in the development and manufacturing of certain optoelectronics. However, these materials are susceptible to photodegradation in the presence of oxygen. This is due to a polymer’s populated triplet state creating singlet oxygen. In recent years, the use of plasmonic metal nanoparticles in the polymer systems or deposited on a substrate, have yielded polymer films that degrade much slower than films with the polymer alone, as long as there is good overlap with the plasmon of the metal and the emission of the polymer. Since this overlap is crucial, tunability of the plasmon is essential to “fit” various polymer systems. The research presented here provides methodology for the facile manufacturing and tuning of metal deposits for such purposes. Not only this, but through increasing the tunability of these plasmons we are able to better image various emissive pathways and species better in a polymer system deposited on film.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.