KEYWORDS: Multiplexing, Analog electronics, Safety, Receivers, Mobile devices, Glucose, Digital electronics, Dielectric spectroscopy, Data conversion, Data acquisition
A miniaturized potentiostat integrated with a three-electrode system to monitor different analytes is presented. The potentiostat circuit has been designed to have the feature of four-channel multiplexing to operate different electrochemical cells simultaneously. It is Bluetooth-connected to a user-controlled mobile app through which the system is wirelessly controlled and data is acquired. The personalized data from the analysis are displayed and analyzed in the mobile app. The system is comprised of four units: digital to analog converter (DAC), multiplexing unit, control unit, and current to voltage converter (CVC). The circuit is run by Arduino NANO 33 BLE. The Arduino's digital pulse width modulator (PWM) signal is converted into an analog signal through the DAC unit to run the scanning in the voltage range of -1V to 2V. This output of the DAC unit is then fed into the multiplexing unit to distribute it to all four control units one at a time. Later, each control unit of the respective cells performs scanning through the three-electrode system connected to the control unit. The real-time scanning data collected from the cell, sent to the CVC unit, and converted into a voltage to be readable by the Arduino. With its small form factor, low power, and low cost the presented system can be used wearable health monitoring platforms.
Fast and accurate detection and monitoring of alcohol consumption have significant importance for safety and clinical applications. The excessive consumption of alcohol causes many health issues, such as colon, rectum, mouth, and throat cancers, liver cirrhosis, stroke, cardiovascular disease, and several psychiatric comorbidities. Alcohol addiction treatments also require close monitoring of the consumption. The correlation of alcohol concentration levels in sweat with the blood alcohol content (BAC) encourages developing a wearable sensing platform for alcohol detection noninvasively, continuously, and in real-time. Moreover, sweat is considered one of the most useful body fluids for biosensing applications since it contains several biomarkers with crucial medical information and is easy to collect. ZnO has exclusive chemical and physical characteristics to enhance chemical stability in physiological environments. Moreover, it has higher catalytic activity, biocompatibility, and a higher isoelectric point (IEP) of 9.5. Such a high IEP of ZnO nanoflakes (NFs) improves any biomolecules' immobilization. Hence, there is no necessity for an additional binding layer between the enzyme and the sensing electrode. A single-step sonochemical approach was developed to synthesize a thin layer of ZnONFs virtually on any substrate. This technique is fast, catalyst-free, less expensive, and ecologically benign, which enables a well-oriented growth on polyethylene terephthalate (PET) over an extensive range. In this study, an electrochemical biosensor was fabricated by immobilization of alcohol oxidase (AOX) on ZnO nanoflakes with a thickness of 20nm, synthesized on Au-coated PET. The results demonstrated a fast response within 5s. The sensor was tested in the range of 1 mg – 400 mg, which covers the entire physiological range, and the sensitivity of the sensor was determined by 3.47 nA/mg/dL/cm2.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.