Active metasurfaces have received remarkable attention due to the advantage of adjusting their functions without changing physical structures. However, the previous active metasurfaces suffer from an inevitable correlation between amplitude and phase modulation of light. They inherently lack the degrees of freedom to independently control the amplitude and phase of light due to their single resonant design. We introduce a metamolecule which incorporates two consecutive graphene plasmonic nano-resonators. The metasurface using active metamolecules can be free from correlation problems and independently control the amplitude and phase of the scattered wave. A generalized graphical approach has been developed for an intuitive design guideline. Furthermore, dynamic beam steering and holographic wavefront reconstruction are demonstrated by full-wave simulation.
Typical many-wavelength scale of the optical fiber-integrated photonic elements (for example, ring resonators, Bragg reflectors, Mach-Zehnder interferometers, etc.) has been an insuperable obstacle for the realization of truly integrated photonic circuits that would have the dimensions compliant with the semiconductor industry standards. Doped graphene however, promises the deeply subwavelength size of the plasmonic-based optical elements due to the very short plasmon wavelength. In this work, we propose a design of the ultra-compact fiber-integrated optical switch based on the graphene-functionalized plasmonic nano-cavity for ultrafast light modulation. Presence of graphene allows to actively control the plasmonic resonance in the cavity via the electrostatic doping, so that properly tuned Fermi level in graphene results in a strong constructive (destructive) Fano interference between the propagating mode in the fiber and the graphene plasmonic mode in the nano-cavity, increasing (zeroing) the transmission efficiency at given frequency. The nano-cavity effectively works as a plasmonic Fabry-Perot resonator, significantly enhancing the coupling efficiency as well as the interference strength. Due to the strong confinement of graphene plasmons, the active volume of the switch can be as small as 10–3λ0–3, making it possible to build an optical circuit with a very high density of elements. Furthermore, sharp profile of the Fano resonance provides a fast switching speed even with small variation of doping. Therefore, proposed design requires very low driving voltage of ~1V, while providing the modulation depth of at least 0.5.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.