The Black Hole Explorer (BHEX) is a next-generation space very long baseline interferometry (VLBI) mission concept that will extend the ground-based millimeter/submillimeter arrays into space. The mission, closely aligned with the science priorities of the Japanese VLBI community, involves an active engagement of this community in the development of the mission, resulting in the formation of the Black Hole Explorer Japan Consortium. Here we present the current Japanese vision for the mission, ranging from scientific objectives to instrumentation. The Consortium anticipates a wide range of scientific investigations, from diverse black hole physics and astrophysics studied through the primary VLBI mode, to the molecular universe explored via a potential single-dish observation mode in the previously unexplored 50-70 GHz band that would make BHEX the highest-sensitivity explorer ever of molecular oxygen. A potential major contribution for the onboard instrument involves supplying essential elements for its high-sensitivity dual-band receiving system, which includes a broadband 300 GHz SIS mixer and a space-certified multi-stage 4.5K cryocooler akin to those used in the Hitomi and XRISM satellites by the Japan Aerospace Exploration Agency. Additionally, the Consortium explores enhancing and supporting BHEX operations through the use of millimeter/submillimeter facilities developed by the National Astronomical Observatory of Japan, coupled with a network of laser communication stations operated by the National Institute of Information and Communication Technology.
VLBI Exploration of Radio Astrometry (VERA) is a VLBI facility operated by the National Astronomical Observatory of Japan. It comprises four 20 m radio telescopes located across the country. VLBI observations at 86 GHz allow us to explore the jet base of nearby active galactic nuclei. In recent years, the development of the 86 GHz receiver systems at the East Asia VLBI Network (EAVN) has started. Currently, only three Korea VLBI Network (KVN) antennas provide 86 GHz VLBI capability in the member stations of EAVN. The participation of VERA in the 86 GHz VLBI observations will boost resolution, sensitivity, and dynamic range. Therefore, we are developing a new 86 GHz low noise receiver system to be installed at VERA Mizusawa and Ishigaki stations. We are considering a cooled circular polarization receiver covering a wide frequency range of 67−116 GHz with the capability of cooling HEMT amplifiers. We are developing a room temperature 2 side band (2SB) system for down-converting signals in the 67−116 GHz band. Recently developed room-temperature mixers with an IF frequency over 25 GHz could cover most of the 67−116 GHz RF signals in a single observation. In this poster, we will discuss the development progress of the 2SB receiver and the design status of the cooling Dewar.
We describe the latest development of the control and monitoring system of the Greenland Telescope (GLT). The GLT is a 12-m radio telescope aiming to carry out the sub-millimeter Very Long Baseline Interferometry (VLBI) observations through the Event Horizon Telescope (EHT) and the Global Millimeter VLBI Array (GMVA), to image the shadows of super massive black holes. The telescope is currently located at the Thule Air Base for commissioning before deployed to the Summit Station. The GLT participated in the VLBI observing campaigns in 2018 and 2019 and fringes were successfully detected at 86 and 230 GHz. Our antenna control software was adapted from the Submillimeter Array (SMA), and as a result for single-dish observations we added new routines to coordinate it with other instruments. We are exploring new communication interfaces; we utilized both in-memory and on-disk databases to be part of the interfaces not only for hardware monitoring but also for engineering event logging. We plan to incorporate the system of the James Clerk Maxwell Telescope for the full Linux-based receiver control. The current progress of integrating our receivers, spectrometers, sub-reflector, and continuum detector into control is presented, together with the implementation of the commissioning software for spectral line pointing. We also describe how we built the anti-collision protection and the recovery mechanism for the sub-reflector hexapod.
The Greenland Telescope (GLT), currently located at Thule Air Base, is a 12-m single dish telescope operating at frequencies of 86, 230 and 345 GHz. Since April 2018, the GLT has regularly participated in (sub-)mm VLBI observations of supermassive black holes as part of the Event Horizon Telescope (EHT) and the Global mm VLBI Array (GMVA). We present the status of scientific commissioning activities at the GLT, including most recently the 345 GHz first light and test observations. The antenna surface accuracy has been improved to ~25 microns through panel adjustments aided by photogrammetry, significantly increasing the antenna efficiency. Through all-sky spectral line pointing observations (SiO masers at 86 GHz and CO at 230 and 345 GHz), we have improved the radio pointing accuracy down to <~ 3" at all 3 frequencies. Due to the pandemic, we are in the process of transitioning GLT commissioning and observing activities to remote operations.
The Greenland Telescope project has recently participated in an experiment to image the supermassive black hole shadow at the center of M87 using Very Long Baseline Interferometry technique in April of 2018. The antenna consists of the 12-m ALMA North American prototype antenna that was modified to support two auxiliary side containers and to withstand an extremely cold environment. The telescope is currently at Thule Air Base in Greenland with the long-term goal to move the telescope over the Greenland ice sheet to Summit Station. The GLT currently has a single cryostat which houses three dual polarization receivers that cover 84-96 GHz, 213-243 GHz and 271-377 GHz bands. A hydrogen maser frequency source in conjunction with high frequency synthesizers are used to generate the local oscillator references for the receivers. The intermediate frequency outputs of each receiver cover 4-8 GHz and are heterodyned to baseband for digitization within a set of ROACH-2 units then formatted for recording onto Mark-6 data recorders. A separate set of ROACH-2 units operating in parallel provides the function of auto-correlation for real-time spectral analysis. Due to the stringent instrumental stability requirements for interferometry a diagnostic test system was incorporated into the design. Tying all of the above equipment together is the fiber optic system designed to operate in a low temperature environment and scalable to accommodate a larger distance between the control module and telescope for Summit Station. A report on the progress of the above electronics instrumentation system will be provided.
The Greenland Telescope (GLT) project and the East Asian Observatory (EAO) successfully commissioned the first light GLT instrument at the James Clerk Maxwell Telescope (JCMT) in Hawaii, prior to transferring the instrument to Greenland. The GLT instrument which comprises of a cryostat with three cartridge-type receivers (at 86GHz, 230GHz and 345GHz) was installed into the receiver cabin of JCMT and operated in three modes: - (a) Regular JCMT observing with the GLT instrument, using ACSIS, (JCMT’s autocorrelation spectrometer) as the backend and JCMT software for telescope control, data reduction, pointing and antenna focus adjustment. (b) Single dish observations of astronomical spectral line sources, recording data onto mark 6 recorders for offline data reduction. (c) eSMA interferometer array observations at 230GHz in conjunction with the SMA. In this paper, we report on the installation and integration of the GLT instrument at JCMT, present results from commissioning and show how the success of the GLT instrument commissioning fits with our plans for future instrumentation at JCMT.
The Greenland Telescope Project (GLT) has successfully commissioned its 12-m sub-millimeter. In January 2018, the fringes were detected between the GLT and the Atacama Large Millimeter Array (ALMA) during a very-long-baseline interferometry (VLBI) exercise. In April 2018, the telescope participated in global VLBI science observations at Thule Air Base (TAB). The telescope has been completely rebuilt, with many new components, from the ALMA NA (North America) Prototype antenna and equipped with a new set of sub-millimeter receivers operating at 86, 230, and 345 GHz, as well as a complete set of instruments and VLBI backends. This paper describes our progress and status of the project and its plan for the coming decade.
The Greenland Telescope completed its construction, so the commissioning phase has been started since December 2017. Single-dish commissioning has started from the optical pointing which produced the first pointing model, followed by the radio pointing and focusing using the Moon for both the 86 GHz and the 230 GHz receivers. After Venus started to rise from the horizon, the focus positions has been improved for both receivers. Once we started the line pointing using the SiO(2-1) maser line and the CO(2-1) line for the 86 GHz and the 230 GHz receivers, respectively, the pointing accuracy also improved, and the final pointing accuracy turned to be around 3" - 5" for both receivers. In parallel, VLBI commissioning has been performed, with checking the frequency accuracy and the phase stability for all the components that would be used for the VLBI observations. After all the checks, we successfully joined the dress rehearsals and actual observations of the 86 GHz and 230 GHz VLBI observations, The first dress rehearsal data between GLT and ALMA were correlated, and successfully detected the first fringe, which confirmed that the GLT commissioning was successfully performed.
We describe the control and monitoring system for the Greenland Telescope (GLT). The GLT is a 12-m radio telescope aiming to carry out the sub-millimeter Very Long Baseline Interferometry (VLBI) observations and image the shadow of the super massive black hole in M87. In November 2017 construction has been finished and commissioning activity has been started. In April 2018 we participated in the VLBI observing campaign for the Event Horizon Telescope (EHT) collaboration. In this paper we present the entire GLT control/monitoring system in terms of computers, network and software.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.