An intriguing property of a three-dimensional topological insulator (TI) is the existence of surface states with spin-momentum locking. We report the discovery of a new type of Hall effect in a TI Bi2Se3 film [1]. The Hall resistance scales linearly with both the applied electric and magnetic fields and exhibits a π/2 angle offset with respect to its longitudinal counterpart, in contrast to the usual angle offset of π/4 between the linear planar Hall and anisotropic magnetoresistance. At variance with the nonlinear Hall effect due to Berry curvature dipole in time-reversal invariant materials, this novel nonlinear planar Hall effect originates from the conversion of a nonlinear transverse spin current to a charge current due to the concerted actions of spin-momentum locking and time-reversal symmetry-breaking, which also exists in other non-centrosymmetric materials [e.g., WTe2 and the 2DEG on the SrTiO3(001) surface] with a large span of magnitude.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.