This paper proposes and verified a modified cavity configuration in oscillating-amplifying integrated fiber laser for stimulated Raman scattering suppression. A short segment of YDF and a long piece of GDF is used in the oscillating section, which can simultaneously suppress the onset of Raman component and avoid the self-pulsing operation caused by the extremely low gain in cavity. Experimental result shows a 31dB Raman suppression ratio at 1080nm when output power reaches 5kW without any other Raman suppression element.
The stimulated Brillouin scattering (SBS) effect in fiber amplifiers using white noise signal (WNS) phase modulated seed is simulated. The influences of cut-off frequencies of WNS and the output fiber structure on SBS threshold are discussed. Basing on simulation results, optimized phase modulation signal and output fiber structure are achieved to suppress SBS. A fiber laser is established according to the simulation results.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.