This will count as one of your downloads.
You will have access to both the presentation and article (if available).
For both types of instruments, there are advantages to physically separating the light collecting optics from the spectroscopy optics. The light collection system will often have articulating or rotating elements to facilitate the interrogation of multiple samples with minimum expenditure of energy and motion. As such, the optical head is often placed on a boom or an appendage allowing it to be pointed in different directions or easily positioned in different locations. By contrast, the spectrometry portion of the instrument is often well-served by placing it in a more static location. The detectors often operate more consistently in a thermally-controlled environment. Placing them deep within the spacecraft structure also provides some shielding from ionizing radiation, extending the instrument’s useful life. Finally, the spectrometry portion of the instrument often contains significant mass, such that keeping it off of the moving portion of the platform, allowing that portion to be significantly smaller, less massive and less robust.
Large core multi-mode optical fibers are often used to accommodate the optical connection of the two separated portions of such instrumentation. In some cases, significant throughput efficiency improvement can be realized by judiciously orienting the strands of multi-fiber cable, close-bunching them to accommodate a tight focus of the optical system on the optical side of the connection, and splaying them out linearly along a spectrometer slit on the other end.
For such instrumentation to work effectively in identifying elements and molecules, and especially to produce accurate quantitative results, the spectral throughput of the optical fiber connection must be consistent over varying temperatures, over the range of motion of the optical head (and it’s implied optical cable stresses), and over angle-aperture invariant of the total system. While the first two of these conditions have been demonstrated[4], spectral observations of the latter present a cause for concern, and may have an impact on future design of fiber-connected LIBS and Raman spectroscopy instruments. In short, we have observed that the shape of the spectral efficiency curve of a large multi-mode core optical fiber changes as a function of input angle.
View contact details
No SPIE Account? Create one