SignificanceIndia has one of the highest rates of oral squamous cell carcinoma (OSCC) in the world, with an incidence of 15 per 100,000 and more than 70,000 deaths per year. The problem is exacerbated by a lack of medical infrastructure and routine screening, especially in rural areas. New technologies for oral cancer detection and timely treatment at the point of care are urgently needed.AimOur study aimed to use a hand-held smartphone-coupled intraoral imaging device, previously investigated for autofluorescence (auto-FL) diagnostics adapted here for treatment guidance and monitoring photodynamic therapy (PDT) using 5-aminolevulinic acid (ALA)-induced protoporphyrin IX (PpIX) fluorescence (FL).ApproachA total of 12 patients with 14 buccal mucosal lesions having moderately/well-differentiated micro-invasive OSCC lesions (<2 cm diameter and <5 mm depth) were systemically (in oral solution) administered three doses of 20 mg / kg ALA (total 60 mg / kg). Lesion site PpIX and auto-FL were imaged using the multichannel FL and polarized white-light oral cancer imaging probe before/after ALA administration and after light delivery (fractionated, total 100 J / cm2 of 635 nm red LED light).ResultsThe handheld device was conducive for access to lesion site images in the oral cavity. Segmentation of ratiometric images in which PpIX FL is mapped relative to auto-FL enabled improved demarcation of lesion boundaries relative to PpIX alone. A relative FL (R-value) threshold of 1.4 was found to segment lesion site PpIX production among the patients with mild to severe dysplasia malignancy. The segmented lesion size is well correlated with ultrasound findings. Lesions for which R-value was >1.65 at the time of treatment were associated with successful outcomes.ConclusionThese results indicate the utility of a low-cost, handheld intraoral imaging probe for image-guided PDT and treatment monitoring while also laying the groundwork for an integrated approach, combining cancer screening and treatment with the same hardware.
New technologies for oral cancer detection and timely treatment at the point of care are urgently needed in resource limited clinics in South Asia, which face some of the highest incidence and mortality rates for oral malignancy in the world. Building on previous success with a fiber-coupled intraoral PDT light delivery system we investigate here the implementation of an intraoral diagnostic fluorescence imaging tool for guidance and monitoring PDT response. Our results indicate the utility of this approach while also laying the groundwork for combining cancer screening and treatment with the same hardware going forward.
India has one of the highest rates of oral squamous cell carcinoma (OSCC) in the world, with an incidence of 15 per 100,000 and more than 70,000 deaths per year. The problem is exacerbated by lack of medical infrastructure and routine screening, especially in rural areas. This collaboration recently developed, and clinically validated, a low-cost, portable and easy-to-use platform for intraoral photodynamic therapy (PDT) specifically engineered for use in global health settings. Here, we explore the implementation of our low-cost PDT system in conjunction with a small, handheld smartphone-coupled, multichannel fluorescence and white-light oral cancer imaging probe, which was also developed for global health settings. Our study aimed to use this mobile intraoral imaging device for treatment guidance and monitoring PDT using 5-aminolevulinic acid (ALA)-induced protoporphyrin IX (PS; PpIX) fluorescence. A total of 12 patients with 14 lesions having moderately/well-differentiated micro-invasive OSCC lesions (<2 cm diameter, depth <5 mm) were systemically administered with three doses of 20mg/kg ALA (total 60mg/kg). Lesion site PpIX and auto fluorescence was analyzed before/after ALA administration, and again after light delivery (fractionated, total 100 J/cm2 of 630nm red LED light). Quantification of relative PpIX fluorescence enables lesion area segmentation to improve guidance of light delivery and reports extent of photobleaching. These results indicate the utility of this approach for image-guided PDT and treatment monitoring while also laying groundwork for an integrated approach, combining cancer screening and treatment with the same hardware.
Oral cancers are among the most prevalent malignancies in males. In developing countries like India where chewing tobacco and other carcinogen containing mixtures is common, incidence of oral cancers is high. Photodynamic therapy is emerging as a promising method for non-disfiguring treatment for early malignant lesions of the buccal mucosa with relatively few effects and potential for implementation in settings with limited medical infrastructure
We evaluate ultrasonography as an approach for assessment of PDT response in oral malignancies.In our study we selected stage 1 malignancy of the buccal mucosa using both ultrasonography followed by histopathology.The criterion for selection on USG was lesion length of 2cm or less and depth of 5mm confirmed by biopsy and histopathology analysis. Subsequently, the patients found positive on biopsy were treated with ALA PDT with a LED light source. Following treatment these patients were reassessed with ultrasound at day 10. The images obtained were compared and evaluated for change in the size of the lesion, their echopattern, vascularity, mucosal status etc.
It was found, lesions completely hypoechoic signifying necrosis came out negative on biopsy every single time, confirming hypoechogenecity as the single best indicator for success of PDT treatment. However, those lesions which did not develop necrosis but were negative on biopsy, the indirect markers were small initial size of the lesion, a lack of vascularity within the lesion and surrounding inflammation.
To conclude, ultrasonography is a convenient, reliable and radiation free method for post PDT evaluation of lesions of buccal mucosa.
Oral cancer represents over 30% of cancers reported in low middle-income countries (LMIC), like India and is the leading cause of cancer death among Indian men. Surgery, radiation and chemo therapies are the mainstay of management but are either too expensive, unavailable for people or have extensive side effects. An alternate effective therapy for oral cancer is photodynamic therapy (PDT), a light based spatially targeted cytotoxic therapy that has shown excellent healing of the oral mucosa post treatment. We here combined engineering, optics and biochemistry to produce a low-cost, mobile LED-based light source with 3D printed light applicators for smart phone-based, image-guided PDT. After validating the devices in preclinical models, we performed an ergonomics study on 10 healthy volunteers at the MGH, where the comfort level of the applicators (anterior buccal cheek, posterior buccal cheek and retromolar positions) and presence of fatigue or numbness in the mouth due to the applicators was evaluated. We found that the retromolar and posterior applicators were the most comfortable and well tolerated. After these initial steps, the device was tested in clinical studies of early oral cancer in India. We observe in subjects with T1N0M0 oral lesions that our applicator and light system combination delivered light to cover the entire lesion area and yielded effective PDT response. Of the 18 treatments so far, 14 subjects have responded, with no residual/recurrent disease in follow-up biopsy. The significance of this work is that it offers an alternative treatment modality for early disease without associated morbidities.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.