Lightweight, aluminum, freeform prototype mirrors have been designed and fabricated by a Thai led team, with UK support, for intended applications within the Thai Space Consortium (TSC) satellite series. The project motivation was to explore the different design strategies and fabrication steps enabled by both conventional (mill, drill, and lathe) and additive (3D printing) manufacture of the prototype substrates. Single Point Diamond Turning was used to convert the substrates into mirrors and optical metrology was used to evaluate the different mirror surfaces. The prototype criteria originated from the TSC-1 satellite tertiary mirror, which is designed to minimize the effect of Seidel aberrations before the beam enters the hyperspectral imager. To converge upon the prototype designs, Finite Element Analysis (FEA) was used to evaluate the different physical conditions experienced by the prototypes during manufacture and how these influence the optical performance. The selected designs satisfied the mass and surface displacement criteria of the prototype and were adapted to either the conventional or additive manufacturing process. This paper will present the prototype design process, substrate manufacture, optical fabrication, and an interferometric evaluation of the optical surfaces comparing the conventional and additive manufacturing processes.
The Exoplanet High-Resolution Spectrograph (EXOhSPEC) is a high-resolution spectrograph for the characterisation of exoplanets with the Thai National Telescope. The folded version of this instrument comprises one triplet lens to collimate the beam incident on the grating and to focus the beam reflected by the grating onto the camera. This collimator comprises three lenses L1, L2 and L3 of diameter varying between 50 mm and 60 mm. We specified the barrel to guarantee a maximum decenter of the lenses equal to 25 μm. The maximum error in the orientation of each single lens is specified to be lower than 0.03º. The proposed concept is based on a semi-kinematic mounting which is used to restrain these lenses with 6 and 30 N of preloads on the axial and lateral directions to ensure their stability. These preloads are applied to the lenses using the elastic pushing force of silicone elastomers and spring force from ball-plungers. We present the design of the collimator and the assembly method. Our Finite Element Analyses show that the maximum surface error induced by the preloads is lower than 60 nm Peak-To-Valley on each optical surface of L1, L2, and L3. We describe our manufacturing process using NARIT’s CNC machine and its validation using our Coordinate-Measuring Machine.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.