Antimony trisulfide (Sb2S3) is an Earth abundant material that is transparent to visible and near infrared light (N-IR). Switching the material between amorphous and crystalline states causes radical property changes that deem it useful for programming the response of visible and N-IR photonics devices. We have demonstrated how Sb2S3 can be used to program high resolution micro-displays, dielectric metasurfaces, hyperbolic metamaterials, waveguides, and all-optical neural networks. This presentation will discuss these demonstrations and the underlying physics responsible for the phase transition in Sb2S3.
If electro-optic conversion of current photonic NNs could be postponed until the very end of the network, then the execution time is simply the photon time-of-flight delay. Here we discuss a first design and performance of an all-optical perceptron and feed-forward NN. Key is the dual-purpose foundry-approved heterogeneous integration of phase-change-materials resulting in a) volatile nonlinear activation function (threshold) realized with ps-short optical pulses resulting in a non-equilibrium variation of the materials permittivity, and b) thermo-optically writing a non-volatile optical multi-cell (5-bit) memory for the NN weights after being (offline) trained. Once trained, the weights only required a rare update, thus saving power. Performance wise, such an integrated all-optical NN is capable of < fJ/MAC using experimental demonstrated pump-probe [Waldecker et al, Nat. Mat. 2015] with a delay per perceptron being ~ps [Miscuglio et al. Opt.Mat.Exp. 2018] has a high cascadability.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.