We experimentally demonstrate self-tuning of a white light seeded two-stage optical parametric amplifier using an evolutionary strategy algorithm. Enabled by this approach we demonstrate the automated reproducible adjustment of the lasers working point and achieve highly stable performance of the laser.
The generation of THz-frequency radiation via nonlinear parametric frequency down-conversion has long been driven by the spectroscopy and imaging communities. As a result, little efforts have been undertaken toward the generation of high energy THz-frequency pulses. THz-frequency radiation has however recently been identified has a promising driver for strong-field physics and an emerging generation of compact particle accelerators. These accelerators require THzfrequency pulses with energies in the multi-millijoule range therefore demanding orders of magnitude improvements from the current state-of-the-art.
Much can be gained by improving the intrinsically low efficiency of the down-conversion process while still resorting to existing state-of-the-art lasers. However, the fundamental Manley-Rowe limit caps the efficiency of parametric downconversion from 1-μm wavelength lasers to sub-THz frequency to the sub-percent range.
We present methods that promise boosting the THz radiation yield obtained via parametric down-conversion beyond the Manley-Rowe limit. Our method relies on cascaded nonlinear three-wave mixing between two spectrally neighboring laser pulses in periodically poled Lithium Niobate. Owing to favorable phase-matching, the down-conversion process avalanches, resulting in spectral broadening in the optical domain. This allows in-situ coherent multiplexing of multiple parametric down-conversion stages within a single device and boosting the efficiency of the process beyond the ManleyRowe limit. We experimentally demonstrated the concept using either broadband, spectrally chirped optical pulses from a Joule-class laser or using two narrowband lasers with neighboring wavelengths. Experimental results are backed by numerical simulations that predict conversion efficiencies from 1 μm to sub-THz radiation in the multi-percent range.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.