ASO-S is a mission proposed for the 25th solar maximum by the Chinese solar community. The scientific objectives are to study the relationships among solar magnetic field, solar flares, and coronal mass ejections (CMEs). ASO-S consists of three payloads: Full-disk Magnetograph (FMG), Lyman-alpha Solar Telescope (LST), and Hard X-ray Imager (HXI), to measure solar magnetic field, to observe CMEs and solar flares, respectively. ASO-S is now under the phase-B studies. This paper makes a brief introduction to the mission.
S. Torii, M. Hareyama, N. Hasebe, K. Kasahara, S. Kobayashi, S. Kodaira, H. Murakami, S. Ozawa, S. Udo, N. Yamashita, K. Ebisawa, H. Fuke, J. Nishimura, Y. Saito, M. Takayanagi, H. Tomida, S. Ueno, T. Yamagami, K. Hibino, S. Okuno, T. Tamura, N. Tateyama, T. Kobayashi, T. Kotani, K. Yamaoka, A. Yoshida, Y. Shimizu, M. Takita, T. Yuda, Y. Katayose, M. Shibata, E. Kamioka, A. Kubota, K. Yoshida, M. Ichimura, S. Kuramata, Y. Tunesada, T. Terasawa, H. Kitamura, Y. Uchihori, Y. Komori, K. Mizutani, K. Munakata, A. Shiomi, J. Mitchell, A. Ericsson, T. Hams, J. Krizmanic, A. Moissev, M. Sasaki, J. Ormes, M. Cherry, T. Guzik, J. Wefel, W. Binns, M. Israel, H. Krawczynski, P. Marrocchesi, M. Gagliesi, G. Bigongiari, A. Caldarone, M. Kim, R. Cecchi, P. Maestro, V. Millucci, R. Zei, C. Avanzini, T. Lotadze, A. Messineo, F. Morsani, O. Adirani, L. Bonechi, P. Papini, E. Vannuccini, J. Chan, W. Gan, T. Lu, Y. Ma, H. Wang, G. Chen
KEYWORDS: Particles, Gamma radiation, Sensors, Space telescopes, Electroluminescence, Scintillators, Signal to noise ratio, Anisotropy, Telescopes, Solar energy
We are developing the CALorimetric Electron Telescope, CALET, mission for the Japanese Experiment Module
Exposed Facility, JEM-EF, of the International Space Station. Major scientific objectives are to search for the nearby
cosmic ray sources and dark matter by carrying out a precise measurement of the electrons in 1 GeV - 20 TeV and
gamma rays in 20 MeV - several 10 TeV. CALET has a unique capability to observe electrons and gamma rays over 1
TeV since the hadron rejection power can be larger than 105 and the energy resolution better than a few % over 100 GeV.
The detector consists of an imaging calorimeter with scintillating fibers and tungsten plates and a total absorption
calorimeter with BGO scintillators. CALET has also a capability to measure cosmic ray H, He and heavy ionsi up to
1000 TeV. It also will have a function to monitor solar activity and gamma ray transients. The phase A study has
started on a schedule of launch in 2013 by H-II Transfer Vehicle (HTV) for 5 year observation.
SMESE (SMall Explorer For the study of Solar Eruptions) is a Franco-Chinese microsatellite mission. The scientific
objectives of SMESE are the study of coronal mass ejections and flares. Its payload consists of three instrument
packages : LYOT, DESIR and HEBS. LYOT is composed of a Lyman α (121.6 nm) coronagraph, a Lyman α disk imager and a far UV disk imager. DESIR is an infrared telescope working at 35 μm and 150 μm. HEBS is
a high energy burst spectrometer working in X rays and γ rays covering the 10 keV to 600 MeV range. SMESE
will be launched around 2011, providing a unique opportunity of detecting and understanding eruptions at the
maximum activity phase of the solar cycle in a wide range of energies. The instrumentation on board SMESE is
described in this paper.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.