Long-lived room temperature ‘phosphorescence’ from organic molecular crystals has attracted great attention owing to potential applications in organic electronics, information storage, and biotechnologies. The features of the persistent luminescence strongly depend on the electronic properties of the individual molecules, and on their molecular packing in the crystal lattice. Here, a new strategy is developed by rationally designing phosphors incorporating and combining for the first time a bridge for sigma-conjugation and a moiety for H-bond-directed supramolecular self-assembly. The molecular crystals exhibit room temperature ‘phosphorescence’ quantum yields that reach up to 20% and lifetimes up to 520 ms. This study provides a promising strategy for the development of molecular crystals exhibiting efficient long-lived room temperature persistent luminescence.
Long-lived room temperature phosphorescence from organic molecular crystals has attracted great attention owing to potential applications in organic electronics, information storage, and biotechnologies. The features of the persistent luminescence strongly depend on the electronic properties of the individual molecules, and on their molecular packing in the crystal lattice. Here, a new strategy is developed by rationally designing phosphors incorporating and combining for the first time a bridge for sigma-conjugation and a moiety for H-bond-directed supramolecular self-assembly. The molecular crystals exhibit room temperature phosphorescence quantum yields that reach up to 20% and lifetimes up to 520 ms. This study provides a promising strategy for the development of molecular crystals exhibiting efficient long-lived room temperature phosphorescence.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.