The nanowire transistors on silicon-on-insulator (SOI) substrate embedded with ferroelectric hafnium-zirconium-oxide (HfZrO2) are elaborately probed when the devices are illuminated with the ultraviolet (UV) laser. The basic functionality of the ferroelectric nanowire transistor can be verified by monitoring the drain current hysteresis during the bidirectional gate voltage scan. Therefore, this study mainly analyzes and summarizes the electrical response of the device to ultraviolet (UV) irradiation; the main emphases will be placed on the rotational direction of the hysteresis window and the width of the hysteresis window when components of different dimensions are compared with one another. To administer the comparisons impartially, the pertinent surface-to-volume ratios of these nanowire transistors are used as the gauging parameters. As the device measurements would demonstrate, Hysteresis rotating in a clockwise direction is attributed to the oxide layer defects, while the counterclockwise direction is induced by the ferroelectric effect. Needless to say, the quality of the device itself is still contingent upon the gate oxide robustness and the quality of its adjacent interfaces. And last but not least, the threshold voltage shift is also used as an indicator to illuminate the impact of changing polarization effect on the nanoscale devices. Through the effective modulation of the hysteretic window by irradiating the nanowire FETs with a UV laser, we believe many unique applications involving the optical modulation and photodetection that are commonly found in silicon photonics can be realized.
Highly reliable and low-cost long-period corrugation and phase gratings based on a cascade of phase-shifted lithium niobate waveguides are theoretically analyzed, experimentally realized and characterized in a logical sequence. The realization of these phase-shifted waveguide gratings (LPWG) is subsequently achieved via a two-step proton exchange method. The measurement results have demonstrated that the maximum dip contrast is up to 19.73 dB and the narrowest full-width-at-half-maximum (FWHM) is close to 2.34 nm. Furthermore, for the cascaded pi-phase-shifted long-period waveguide gratings (LPWG), the two resonance wavelengths are symmetrically shifted away from the center wavelength in response to an increase in the number of LPWG sections incorporated.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.