This study demonstrated the performance of photoacoustic imaging at 1064 nm using phosphorus phthalocyanine (P-Pc), a contrast agent with strong absorption at 1064 nm. Due to high maximum permissible exposure of 1064 nm laser light and strong absorbance of P-Pc at 1064 nm, we demonstrated an imaging depth of 11.6 cm in chicken breast tissue. For animal imaging, we used P-Pc to target tumor and to track intestine dynamics. Thus, using a contrast medium with extreme absorption at 1064 nm readily enables high quality photoacoustic imaging at exceptional depths.
Here, we introduce a new image reconstruction algorithm that combines coherent weighting with focal-line-based three-dimensional image reconstruction. The new algorithm addresses the major limitation of a linear ultrasound transducer array, i.e., the poor elevation resolution, and does not require any modification to the imaging system or the scanning geometry. We first numerically validated our approach through simulation and then experimentally tested it in phantom and in vivo. Both simulation and experimental results proved that the method can significantly improve the elevation resolution (up to 3.4 times in our experiment) and enhance object contrast.
Slit-enabled photoacoustic tomography (PAT) is a newly developed technique that improves the elevation resolution and signal to noise ratio of a linear array. The slit, placed along the transducer array focus, forms an array of virtual detectors with high receiving angle, which subsequently allows for three dimensional (3D) imaging with near-isotropic spatial resolution. Our development addressed the long-standing issue of high quality 3D imaging with a linear array and will have broad applications in preclinical and clinical imaging. This study presented the principle of slit-PAT and demonstrated its efficiency in phantom, animal, and human experiments.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.