Quantum key distribution (QKD) is a technology to securely share keys against any attack physically permitted, with the principle of quantum mechanics. In recent years, the satellite QKD, which employs artificial satellites as trusted mobile nodes, has been attracting attention in order to overcome the bottleneck of transmission distance. However, in the satellite QKD, quality degradation due to atmospheric effects is expected, as in ordinary satellite laser communications. Therefore, it is desirable to apply an error-correcting code (ECC) that has high error-correcting performance even under the atmospheric-induced effects to the error-correcting process of the satellite QKD. Therefore, in this paper, we examined the application of polar codes, which is known as an ECC with high error correction capability. First, in order to optimize the error correction efficiency, we propose a method to adaptively obtain an appropriate code rate for the received signal strength that changes momentarily due to atmospheric effects. Then, we compare the throughput performances with polar codes to it with low-density parity-check (LDPC) codes, with the numerical simulation assuming Bennett-Brassard 1984 protocol (BB84).
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.