Significance: Low-frequency oscillations (LFOs) ranging from 0.01 to 0.15 Hz are common in functional imaging studies. Some of these LFOs are non-neuronal and are correlated with autonomic physiological processes.
Aim: We investigate the relationships between systemic low-frequency oscillations (sLFOs) measured at different peripheral sites during resting states in ischemic stroke patients.
Approach: Twenty-seven ischemic stroke patients (ages 44 to 90; 20 male and 7 female) were recruited for the study. During the experiments, fluctuations in oxyhemoglobin concentration were measured in the left and right toes, fingertips, and earlobes using a multichannel near-infrared spectroscopy instrument. We applied cross-correlation and frequency component analyses on the sLFO data.
Results: The results showed that embolization broke the symmetry of the sLFO transmission and that the damage was not limited to the local area but spread throughout the body. Among six peripheral sites, the power spectrum width of the earlobes was significantly larger than that of the fingers and toes. This indicates that the earlobes may contain more physiological information. Finally, the results of fuzzy clustering verified that sLFOs can serve as perfusion biomarkers to differentiate stroke from healthy subjects.
Conclusions: The high correlation values and corresponding delays in sLFOs support the hypothesis that (1) the correlation characteristics of sLFOs in stroke patients are different from those of healthy subjects. These characteristics can reflect patient condition, to an extent. Embolization in ischemic stroke patients breaks the symmetry of the body’s sLFO transmission, disrupting the balance of blood circulation. (2) sLFOs can be used as perfusion biomarkers to differentiate ischemic stroke patients from healthy subjects. Studying these signals can explicate the overall feedback/influence of pericentral interactions. Finally, peripheral sLFOs have been shown to be an effective and accurate tool for assessing peripheral blood circulation and vascular integrity in ischemic stroke patients.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.