In our previous work, we proposed to reduce motion artifacts in computed tomography (CT) using an image-based convolutional neural network (CNN). However, its motion compensation performance was limited when the degree of motion was large. We note that a fast scan mode can reduce the degree of motion but also cause streak artifacts due to sparse view sampling. In this study, we aim to initially reduce motion artifacts using a fast scan mode, and to reduce both the streak and motion artifacts using a CNN-based two-phase approach. In the first phase, we focus on reducing streak artifacts caused by sparse projection views. To effectively reduce streak artifacts in the presence of motion artifacts, a CNN with the U-net architecture and residual learning scheme was used. In the second phase, we focus on compensating motion artifacts in output image of the first phase. For this task, the attention blocks with global average pooling were used. To generate datasets, we used extended cardiac-torso phantoms and simulated sparse-view CT using half, quarter, and one-eighth of full projection views with corresponding 6-degree of freedom rigid motions. The results showed that the proposed two-phase approach effectively reduced both the motion and streak artifacts and taking fewer projection views down to one-eighth views (thus improving a scanning speed) provided the better image quality in our simulation study.
In dental CT, the presence of metal objects introduces various artifacts caused by photon starvation and beam hardening. Although several metal artifacts reduction methods have been proposed, they still have limitations in terms of reducing the metal artifacts. In this work, we proposed a method to reduce the metal artifacts with convolutional neural network (CNN). The proposed method is comprised of two steps. In STEP 1, we acquired a more accurate prior image, which is used in normalized metal artifact reduction (NMAR) technique through the CNN. The metal artifacts in output image from STEP 1 are reduced by CNN training, which provides more accurate prior images. In STEP 2, the NMAR is conducted with the acquired prior image from CNN result. To validate the proposed method, we used dental CT images containing metals and without metal to evaluate that the proposed method could significantly reduce the metal artifacts compared to the NMAR method.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.