A wavelength tunable near-infrared laser for use in remote target classification is demonstrated. The laser operates in the range of 1290 nm to 1650 nm and has power output within eye-safety limits. The preliminary results of laboratory tests of remote classification of materials indicate are shown.
Quantum Key Distribution, a fundamental component of quantum secure communication that exploits quantum states and resources for communication protocols, can future-proof the security of digital communications, when if advanced quantum computing systems and mathematical advances render current algorithmic cryptography insecure. A QKD system relies on the integration of quantum physical devices, as quantum sources, quantum channels and quantum detectors, in order to generate a true random (unconditionally secure) cryptographic key between two remote parties connected through a quantum channel. The gap between QKD implemented with ideal and real devices can be exploited to attack real systems, unless appropriate countermeasures are implemented. Characterization of real devices and countermeasure is necessary to guarantee security. Free-space QKD systems can provide secure communication to remote parties of the globe, while QKD systems based on entanglement are intrinsically less vulnerable to attack. Metrology to characterize the optical components of these systems is required. Actually, the “Optical metrology for quantum-enhanced secure telecommunication” Project (MIQC2) is steering the metrological effort for Quantum Cryptography in the European region in order to accelerate the development and commercial uptake of Quantum Key Distribution (QKD) technologies. Aim of the project is the development of traceable measurement techniques, apparatus, and protocols that will underpin the characterisation and validation of the performance and quantum-safe security of such systems, essential steps towards standardization and certification of practical implementations of quantum-based technologies.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.