Two pronounced absorption peaks in blue and red ranges of the chlorin-based photosensitizer (PS) absorption spectrum provide additional benefits in photodynamic therapy (PDT) performance. Differing optical properties of biological tissues in these ranges allow for both dual-wavelength diagnostics and PDT performance. We provide a comparative analysis of different PDT regimes performed with blue and red lights and their combination, with doses varying from 50 to 150 J / cm2. The study was performed on the intact skin of a rabbit ear inner surface, with the use of chlorin e6 as a PS. PDT procedure protocol included monitoring of the treated site with fluorescence imaging technique to evaluate PS accumulation and photobleaching, as well as with optical coherence tomography (OCT) to register morphological and functional responses of the tissue. Optical diagnostic observations were compared with the results of histopathology examination. We demonstrated that PDT procedures with the considered regimes induce weaker organism reaction manifested by edema in normal tissue as compared to irradiation-only exposures with the same light doses. The light doses delivered with red light induce weaker tissue reaction as compared to the same doses delivered with blue light only or with a combination of red and blue lights in equal parts. Results of in-vivo OCT monitoring of tissue reaction are in agreement with the results of histopathology study.
In this study we present a complex approach to photodynamic therapy (PDT) with chlorin based photosensitizers including Monte Carlo based planning and prediction of optical diagnostics results, intra-procedure dual-wavelength fluorescence monitoring allowing to evaluate PS accumulation and photobleaching, and monitoring of tissue response with optical coherence tomography (OCT). The approach was employed to compare the effects of different PDT regimens in normal and tumor tissues and the results of non-invasive optical diagnostics were matched with results of histologic examination, including hematoxylin-eosin and Mallory staining. The considered doses are in the range 50-150 J/cm2 for normal tissues and 150-275 J/cm2 for tumor tissues, single wavelength (405 and 660 nm) and dual-wavelength regimes are studied.
Employment of chlorin-based photosensitizers (PSs) provides additional advantages to photodynamic therapy (PDT) due to absorption peak around 405 nm allowing for superficial impact and efficient antimicrobial therapy. We report on the morphological and clinical study of the efficiency of PDT at 405 nm employing chlorin-based PS. Numerical studies demonstrated difference in the distribution of absorbed dose at 405 nm in comparison with traditionally employed wavelength of 660 nm and difference in the in-depth absorbed dose distribution for skin and mucous tissues. Morphological study was performed at the inner surface of rabbit ear with histological examinations at different periods after PDT procedure. Animal study revealed tissue reaction to PDT consisting in edema manifested most in 3 days after the procedure and neoangiogenesis. OCT diagnostics was confirmed by histological examination. Clinical study included antimicrobial PDT of pharynx chronic inflammatory diseases. It revealed no side effects or complications of the PDT procedure. Pharyngoscopy indicated reduction of inflammatory manifestations, and, in particular cases, hypervascularization was observed. Morphological changes were also detected in the course of monitoring, which are in agreement with pharyngoscopy results. Microbiologic study after PDT revealed no pathogenic bacteria; however, in particular cases, saprophytic flora was detected.
Optical coherence tomography (OCT) is currently actively introduced into clinical practice. Besides diagnostics, it can be efficiently employed for treatment monitoring allowing for timely correction of the treatment procedure. In monitoring of photodynamic therapy (PDT) traditionally employed fluorescence imaging (FI) can benefit from complementary use of OCT. Additional diagnostic efficiency can be derived from numerical processing of optical diagnostics data providing more information compared to visual evaluation. In this paper we report on application of OCT together with numerical processing for clinical diagnostic in gynecology and otolaryngology, for monitoring of PDT in otolaryngology and on OCT and FI applications in clinical and aesthetic dermatology. Image numerical processing and quantification provides increase in diagnostic accuracy. Keywords: optical coherence tomography, fluorescence imaging, photod
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.