The conversion of light into chemical and mechanical energy mediates many important processes in nature, e.g. vision, photosynthesis and DNA photodamage. To understand the structure-function relationships regulating such processes one must strive to study them in their natural environment, i.e. in the liquid-phase. This presentation reports on the design of a novel Ultrafast Electron Diffraction instrument capable of resolving structural dynamics in liquid samples. The capabilities of this instrument are showcased in the study of water, where its structure was resolved up to the 3rd hydration shell with 0.6 Å spatial resolution, and dynamics were resolved with 200 fs resolution.
The physics and chemistry of liquid solutions play a central role in science, and our understanding of life on Earth. Unfortunately, key tools for interrogating aqueous systems, such as infrared and soft X-ray spectroscopy, cannot readily be applied because of strong absorption in water. Here we use gas dynamic forces to generate free-flowing, sub-micron, liquid sheets which are 2 orders of magnitude thinner than anything previously reported. Optical, infrared and X-ray spectroscopies are used to characterize the sheets, which are found to be tunable in thickness from over 1 micron down to less than 20 nanometers, which corresponds to fewer than 100 water molecules thick. At this thickness, aqueous sheets can readily transmit photons across the spectrum, leading to potentially transformative applications in infrared, X-ray, electron spectroscopies and beyond. The ultrathin sheets are stable for days in vacuum, and we demonstrate their use at free-electron laser and synchrotron light sources.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.