This will count as one of your downloads.
You will have access to both the presentation and article (if available).
Live streaming of events over an IP network as a catalyst in media technology education and training
In this paper we will present our projects dedicated to the International Day of Light in Paris. Together with a group of students from our university, we had the special opportunity to be integrated in the program of the opening ceremony at UNESCO in Paris.
With our interdisciplinary projects we have tried to build a bridge between optics, photonics, art and media installations.
An especially challenging activity was the live observing of the Mercury transit on 9 May 2016, which we presented as ‘live astronomy’ with hands-on telescope. The main goal of this event was to awake our students enthusiasm for optics and astronomy.
Furthermore, we report on our experiences with the photography of optical phenomena such as polar lights and green flash.
The classic LCD is currently the most important display technology. The paper will present how the students should develop sense for display technologies besides the theoretical scientific basics. The workshop focuses increasingly on the technical aspects of the display technology and has the goal of deepening the students understanding of the functionality by building simple Liquid Crystal Displays by themselves.
The authors will present their experience in the field of display technologies. A mixture of theoretical and practical lectures has the goal of a deeper understanding in the field of digital color representation and display technologies. The design and development of a suitable learning environment with the required infrastructure is crucial. The main focus of this paper is on the hands-on optics workshop “Liquid Crystal Display in the do-it-yourself”.
All these Raman spectra have been collected by using a self-designed, frequency precise and low-cost Fourier-transform Raman spectrometer (FT-Raman spectrometer) prototype. This FT-Raman prototype has helped to accurately confirm the frequency position of the main characteristic Raman lines of toluene present on the different gasoline-ethanol samples analyzed at smaller proportions than those commonly found in commercial gasoline-ethanol blends. The frequency accuracy validation has been performed by analyzing the same set of toluene samples with two additional state-of-the-art commercial FT-Raman devices. Additionally, the spectral information has been contrasted, with highly-correlated coefficients as a result, with the values of the standard Raman spectrum of toluene.
Modeling and numerical simulation of the transport processes inside DSSC using a monodomain approach
This will count as one of your downloads.
You will have access to both the presentation and article (if available).
View contact details
No SPIE Account? Create one